首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1847篇
  免费   168篇
  国内免费   2篇
  2021年   22篇
  2020年   15篇
  2019年   24篇
  2018年   33篇
  2017年   19篇
  2016年   42篇
  2015年   72篇
  2014年   51篇
  2013年   86篇
  2012年   113篇
  2011年   122篇
  2010年   64篇
  2009年   59篇
  2008年   101篇
  2007年   84篇
  2006年   77篇
  2005年   77篇
  2004年   63篇
  2003年   74篇
  2002年   71篇
  2001年   52篇
  2000年   49篇
  1999年   37篇
  1998年   20篇
  1997年   15篇
  1996年   26篇
  1995年   15篇
  1994年   12篇
  1993年   18篇
  1992年   33篇
  1991年   38篇
  1990年   24篇
  1989年   23篇
  1988年   25篇
  1987年   17篇
  1986年   20篇
  1985年   25篇
  1984年   16篇
  1983年   20篇
  1982年   12篇
  1981年   12篇
  1979年   25篇
  1978年   20篇
  1976年   20篇
  1975年   13篇
  1974年   18篇
  1973年   13篇
  1972年   14篇
  1971年   14篇
  1969年   14篇
排序方式: 共有2017条查询结果,搜索用时 515 毫秒
71.
72.
Both ecological and evolutionary mechanisms have been proposed to describe how natural communities become assembled at both regional and biogeographical scales. Yet, these theories have largely been developed in isolation. Here, we unite these separate views and develop an integrated eco‐evolutionary framework of community assembly. We use a simulation approach to explore the factors determining the interplay between ecological and evolutionary mechanisms systematically across spatial scales. Our results suggest that the same set of ecological and evolutionary processes can determine community assembly at both regional and biogeographical scales. We find that the importance of evolution and community monopolization effects, defined as the eco‐evolutionary dynamics that occur when local adaptation of early established immigrants is fast enough to prevent the later immigration of better pre‐adapted species, are not restricted to adaptive radiations on remote islands. They occur at dispersal rates of up to ten individuals per generation, typical for many species at the scale of regional metacommunities. Dispersal capacity largely determines whether ecological species sorting or evolutionary monopolization structure metacommunity diversity and distribution patterns. However, other factors related to the spatial scale at which community assembly processes are acting, such as metacommunity size and the proportion of empty patches, also affect the relative importance of ecology versus evolution. We show that evolution often determines community assembly, and this conclusion is robust to a wide range of assumptions about spatial scale, mode of reproduction, and environmental structure. Moreover, we found that community monopolization effects occur even though species fully pre‐adapted to each habitat are abundant in the metacommunity, a scenario expected a priori to prevent any meaningful effect of evolution. Our results strongly support the idea that the same eco‐evolutionary processes underlie community assembly at regional and biogeographical scales.  相似文献   
73.
Oviductal fluid (ODF) proteins modulate and support reproductive processes in the oviduct. In the present study, proteins involved in the biological events that precede fertilization have been identified in the rabbit ODF proteome, isolated from the ampulla and isthmus of the oviduct at different time points within 8 h after intrauterine insemination. A workflow is used that integrates lectin affinity capture with stable‐isotope dimethyl labeling prior to nanoLC‐MS/MS analysis. In total, over 400 ODF proteins, including 214 lectin enriched glycoproteins, are identified and quantified. Selected data are validated by Western blot analysis. Spatiotemporal alterations in the abundance of ODF proteins in response to insemination are detected by global analysis. A subset of 63 potentially biologically relevant ODF proteins is identified, including extracellular matrix components, chaperones, oxidoreductases, and immunity proteins. Functional enrichment analysis reveals an altered peptidase regulator activity upon insemination. In addition to protein identification and abundance changes, N‐glycopeptide analysis further identifies 281 glycosites on 199 proteins. Taken together, these results show, for the first time, the evolving oviductal milieu early upon insemination. The identified proteins are likely those that modulate in vitro processes, including spermatozoa function.  相似文献   
74.
75.
Extensive optimization of quinazoline-based lead 8 is described. The structure-activity relationship studies indicate the S-configuration is preferred for the phenylmorpholine substitution. Together with incorporation of a (2-hydroxyl-2-methylpropyl)pyrazole moiety at the 2-position leads to analogs with comparable potency and marked improvement in the pharmacokinetic profile over our previously reported lead compounds. Further in vivo efficacy studies in Kasumi-1 xenograft mouse model demonstrates that the selected inhibitors are well tolerated and highly efficacious in the inhibition of tumor growth. Additionally, the representative analog 19 also demonstrated significant improvement of arthritis severity in a collagen-induced arthritis (CIA) mouse model. These results indicate potential use of these quinazoline-based BET inhibitors for treatment of cancer and inflammatory diseases. A brief discussion of the co-crystallized structure of 19 with BRD4 (BD1) is also highlighted.  相似文献   
76.
Total internal reflection fluorescence excitation (TIRF) microscopy allows the selective observation of fluorescent molecules in immediate proximity to an interface between different refractive indices. Objective‐type or prism‐less TIRF excitation is typically achieved with laser light sources. We here propose a simple, yet optically advantageous light‐emitting diode (LED)‐based implementation of objective‐type TIRF (LED‐TIRF). The proposed LED‐TIRF condenser is affordable and easy to set up at any epifluorescence microscope to perform multicolor TIRF and/or combined TIRF‐epifluorescence imaging with even illumination of the entire field of view. Electrical control of LED light sources replaces mechanical shutters or optical modulators. LED‐TIRF microscopy eliminates safety burdens that are associated with laser sources, offers favorable instrument lifetime and stability without active cooling. The non‐coherent light source and the type of projection eliminate interference fringing and local scattering artifacts that are associated with conventional laser‐TIRF. Unlike azimuthal spinning laser‐TIRF, LED‐TIRF does not require synchronization between beam rotation and the camera and can be monitored with either global or rolling shutter cameras. Typical implementations, such as live cell multicolor imaging in TIRF and epifluorescence of imaging of short‐lived, localized translocation events of a Ca2+‐sensitive protein kinase C α fusion protein are demonstrated.  相似文献   
77.
78.
Yadavilli S  Hegde V  Deutsch WA 《DNA Repair》2007,6(10):1453-1462
Besides its role in translation and ribosome maturation, human ribosomal protein S3 (hS3) is implicated in DNA damage recognition as reflected by its affinity for abasic sites and 7,8-dihydro-8-oxoguanine (8-oxoG) residues in DNA in vitro. Here, we demonstrate that hS3 is capable of carrying out both roles by its ex vivo translocation from the cytoplasm to the nucleus as a consequence of genotoxic stress. The translocation of hS3 is dependent on ERK1/2-mediated phosphorylation of a threonine residue (T42) of hS3. Two different ectopically expressed site-directed mutants of T42 failed to respond to conditions of genotoxic stress, thus providing a link between DNA damage and ERK1/2 dependent phosphorylation of hS3. Lastly, hS3 was traced in exposed cells to its co-localization with 8-oxoG foci, raising the possibility that hS3 is a member of a cellular DNA damage response pathway that results in its interaction with sites of DNA damage.  相似文献   
79.
The Madagascar Jacana Actophilornis albinucha (Jacanidae) is an endemic shorebird found in the threatened wetlands of western Madagascar. This species is presumed to exhibit classical polyandry; however, few data are available to support that assumption. More generally, a lack of basic understanding of this species hinders conservation efforts. We conducted the most extensive study of the Madagascar Jacana to date, and report on its: 1) distribution, population size and density; 2) degree of sexual size dimorphism; and 3) phylogenetic position. The surveys were conducted at 54 lakes, between January and October in 2016. Madagascar Jacana were found at 22 lakes, and within these were distributed at a mean density of 3.5 ± 0.74 [SE] individuals per hectare of surveyed habitat. We estimate the global population size to be between 975 and 2 064 individuals, and habitat destruction appears to be the main threat to the species. Females were significantly larger than males, consistent with reports for other Jacanidae species. Using a mitochondrial DNA fragment, we expanded the Jacanidae genetic phylogeny, and confirmed that Madagascar Jacana is the sister species to the African Jacana Actophilornis africanus. Further studies are urgently needed to thoroughly re-assess the threat status and population trend of the Madagascar Jacana.  相似文献   
80.
We urgently need to predict species responses to climate change to minimize future biodiversity loss and ensure we do not waste limited resources on ineffective conservation strategies. Currently, most predictions of species responses to climate change ignore the potential for evolution. However, evolution can alter species ecological responses, and different aspects of evolution and ecology can interact to produce complex eco‐evolutionary dynamics under climate change. Here we review how evolution could alter ecological responses to climate change on species warm and cool range margins, where evolution could be especially important. We discuss different aspects of evolution in isolation, and then synthesize results to consider how multiple evolutionary processes might interact and affect conservation strategies. On species cool range margins, the evolution of dispersal could increase range expansion rates and allow species to adapt to novel conditions in their new range. However, low genetic variation and genetic drift in small range‐front populations could also slow or halt range expansions. Together, these eco‐evolutionary effects could cause a three‐step, stop‐and‐go expansion pattern for many species. On warm range margins, isolation among populations could maintain high genetic variation that facilitates evolution to novel climates and allows species to persist longer than expected without evolution. This ‘evolutionary extinction debt’ could then prevent other species from shifting their ranges. However, as climate change increases isolation among populations, increasing dispersal mortality could select for decreased dispersal and cause rapid range contractions. Some of these eco‐evolutionary dynamics could explain why many species are not responding to climate change as predicted. We conclude by suggesting that resurveying historical studies that measured trait frequencies, the strength of selection, or heritabilities could be an efficient way to increase our eco‐evolutionary knowledge in climate change biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号