首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   48篇
  650篇
  2023年   5篇
  2022年   4篇
  2021年   8篇
  2020年   5篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   9篇
  2015年   29篇
  2014年   24篇
  2013年   27篇
  2012年   35篇
  2011年   39篇
  2010年   29篇
  2009年   32篇
  2008年   25篇
  2007年   38篇
  2006年   33篇
  2005年   39篇
  2004年   26篇
  2003年   26篇
  2002年   41篇
  2001年   9篇
  2000年   6篇
  1999年   6篇
  1998年   14篇
  1997年   7篇
  1996年   10篇
  1995年   9篇
  1994年   4篇
  1993年   7篇
  1992年   9篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   4篇
  1983年   6篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
排序方式: 共有650条查询结果,搜索用时 12 毫秒
61.
The histones H4 are known as highly conserved proteins. However, in ciliates a high degree of variation was found compared both to other eukaryotes and between the ciliate species. To date, only H4 histones of species belonging to two distantly related classes have been investigated. In order to obtain more detailed information on histone H4 variation in ciliates we undertook a comprehensive sequence analysis of PCR-amplified internal H4 fragments from 12 species belonging to seven out of the nine currently recognized ciliate classes. In addition, we used PCR primers to amplify longer fragments of H3 and H4 genes including the intergenic region. The encoded amino acid sequences reveal a high number of differences when compared with those of other eukaryotes and the ciliate species investigated. Furthermore, in some species H4 gene variants were detected, which result in amino acid differences. The greatest number of substitutions and insertions found was in the amino terminal region of the H4 histones. However, all sequences possess a conserved region corresponding to those of all other eukaryotic H4 histones. The histone gene variations were used to reconstruct phylogenetic relationships. The tree from our data matches perfectly with the ribosomal RNA data: The heterotrichs, which were considered as a late branching lineage, diverge at the base of the ciliate tree and groups formerly thought to represent ancestral lineages now appear as highly derived ciliates. Received: 4 April 1997 / Accepted: 1 August 1997  相似文献   
62.
63.
Highlights? Nondiabetic LRP6 mutation carriers are hyperinsulinemic and insulin resistant ? IR expression is reduced in skeletal muscles of the LRP6 mutation carriers ? Wnt/LRP6 regulate the insulin receptor and IGFR expression ? The LRP6 mutation reduces TCF7L2-dependent IR expression and enhances mTOR activity  相似文献   
64.
Nephronophthisis-related ciliopathies (NPHP-RC) are recessive diseases characterized by renal dysplasia or degeneration. We here identify mutations of DCDC2 as causing a renal-hepatic ciliopathy. DCDC2 localizes to the ciliary axoneme and to mitotic spindle fibers in a cell-cycle-dependent manner. Knockdown of Dcdc2 in IMCD3 cells disrupts ciliogenesis, which is rescued by wild-type (WT) human DCDC2, but not by constructs that reflect human mutations. We show that DCDC2 interacts with DVL and DCDC2 overexpression inhibits β-catenin-dependent Wnt signaling in an effect additive to Wnt inhibitors. Mutations detected in human NPHP-RC lack these effects. A Wnt inhibitor likewise restores ciliogenesis in 3D IMCD3 cultures, emphasizing the importance of Wnt signaling for renal tubulogenesis. Knockdown of dcdc2 in zebrafish recapitulates NPHP-RC phenotypes, including renal cysts and hydrocephalus, which is rescued by a Wnt inhibitor and by WT, but not by mutant, DCDC2. We thus demonstrate a central role of Wnt signaling in the pathogenesis of NPHP-RC, suggesting an avenue for potential treatment of NPHP-RC.  相似文献   
65.
Plants, like animals, use several lines of defense against pathogen attack. Prominent among genes that confer disease resistance are those encoding nucleotide-binding site-leucine-rich repeat (NB-LRR) proteins. Likely due to selection pressures caused by pathogens, NB-LRR genes are the most variable gene family in plants, but there appear to be species-specific limits to the number of NB-LRR genes in a genome. Allelic diversity within an individual is also increased by obligatory outcrossing, which leads to genome-wide heterozygosity. In this study, we compared the NB-LRR gene complement of the selfer Arabidopsis thaliana and its outcrossing close relative Arabidopsis lyrata. We then complemented and contrasted the interspecific patterns with studies of NB-LRR diversity within A. thaliana. Three important insights are as follows: (1) that both species have similar numbers of NB-LRR genes; (2) that loci with single NB-LRR genes are less variable than tandem arrays; and (3) that presence-absence polymorphisms within A. thaliana are not strongly correlated with the presence or absence of orthologs in A. lyrata. Although A. thaliana individuals are mostly homozygous and thus potentially less likely to suffer from aberrant interaction of NB-LRR proteins with newly introduced alleles, the number of NB-LRR genes is similar to that in A. lyrata. In intraspecific and interspecific comparisons, NB-LRR genes are also more variable than receptor-like protein genes. Finally, in contrast to Drosophila, there is a clearly positive relationship between interspecific divergence and intraspecific polymorphisms.  相似文献   
66.
The histone gene H1t is expressed exclusively in pachytene spermatocytes of the testis. In this report we have eliminated the single copy H1t gene by homologous recombination from the mouse genome to analyse the function of the H1t protein during spermatogenesis. Mice homozygous for the mutated H1t gene locus developed normally and showed no anatomic abnormalities until the adult stage. In addition, H1t-deficient mice were fertile and reproduced as wild-type mice. The process of spermatogenesis and the testicular morphology remained unchanged in the absence of H1t. RNase protection analysis demonstrated that H1.1, H1.2 and H1.4 histone gene expression is enhanced during spermatogenesis in H1t-deficient mice.  相似文献   
67.
This work presents the three-dimensional NMR solution structure of recombinant, oxidized, unbound PsaC from Synechococcus sp. PCC 7002. Constraints are derived from homo- and heteronuclear one-, two- and three-dimensional (1)H and (15)N NMR data. Significant differences are outlined between the unbound PsaC structure presented here and the available X-ray structure of bound PsaC as an integral part of the whole cyanobacterial PS I complex. These differences mainly concern the arrangement of the N- and C-termini with respect to the [4Fe-4S] core domain. In the NMR solution structure of PsaC the C-terminal region assumes a disordered helical conformation, and is clearly different from the extended coil conformation, which is one of the structural elements required to anchor PsaC to the PS I core heterodimer. In solution the N-terminus of PsaC is in contact with the pre-C-terminal region but slides in between the latter and the iron-sulfur core region of the protein. Together, these features result in a concerted movement of the N-terminus and pre-C-terminal region away from the F(A) binding site, accompanied by a bending of the N-terminus. In comparison, the same terminal regions are positioned much closer to F(A) and take up an anti-parallel beta-sheet arrangement in PsaC bound to PS I. The conformational changes between bound and unbound PsaC correlate with the differences reported earlier for the EPR spectra of reduced F(A) and F(B) in bound versus unbound PsaC. The observed different structural features in solution are highly relevant for unraveling the stepwise assembly process of the stromal PsaC, PsaD and PsaE subunits to the PS I core heterodimer. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0321-3.  相似文献   
68.
Diplomonads, such as Giardia, and their close relatives retortamonads have been proposed as early-branching eukaryotes that diverged before the acquisition-retention of mitochondria, and they have become key organisms in attempts to understand the evolution of eukaryotic cells. In this phylogenetic study we focus on a series of eukaryotes suggested to be relatives of diplomonads on morphological grounds, the "excavate taxa". Phylogenies of small subunit ribosomal RNA (SSU rRNA) genes, alpha-tubulin, beta-tubulin, and combined alpha- + beta-tubulin all scatter the various excavate taxa across the diversity of eukaryotes. But all phylogenies place the excavate taxon Carpediemonas as the closest relative of diplomonads (and, where data are available, retortamonads). This novel relationship is recovered across phylogenetic methods and across various taxon-deletion experiments. Statistical support is strongest under maximum-likelihood (ML) (when among-site rate variation is modeled) and when the most divergent diplomonad sequences are excluded, suggesting a true relationship rather than an artifact of long-branch attraction. When all diplomonads are excluded, our ML SSU rRNA tree actually places retortamonads and Carpediemonas away from the base of the eukaryotes. The branches separating excavate taxa are mostly not well supported (especially in analyses of SSU rRNA data). Statistical tests of the SSU rRNA data, including an "expected likelihood weights" approach, do not reject trees where excavate taxa are constrained to be a clade (with or without parabasalids and Euglenozoa). Although diplomonads and retortamonads lack any mitochondria-like organelle, Carpediemonas contains double membrane-bounded structures physically resembling hydrogenosomes. The phylogenetic position of Carpediemonas suggests that it will be valuable in interpreting the evolutionary significance of many molecular and cellular peculiarities of diplomonads.  相似文献   
69.

Background

Intimal injury rapidly activates TGFβ and enhances vascular repair by the growth of endothelial (EC) and vascular smooth muscle cells (VSMC). The response to the TGFβ family of growth factors can be modified by BAMBI (BMP, Activin, Membrane Bound Inhibitor) acting as a non-signaling, competitive antagonist of TGFβ type I receptors such as ALK 1 and 5. In vivo the effect of BAMBI will depend on its cell-specific expression and of that of the ALK type receptors. We recently reported EC restricted BAMBI expression and genetic elimination of BAMBI resulting in an in vitro and in vivo phenotype characterized by endothelial activation and proliferation involving alternative pathway activation by TGFβ through ALK 1.

Methodology/Principal Findings

To test the hypothesis that BAMBI modulates arterial response to injury via its effects on endothelial repair and arterial wall neovascularization we used a model of femoral arterial denudation injury in wild type (WT) and BAMBI−/− mice. Arterial response was evaluated at 2 and 4 weeks after luminal endothelial denudation of femoral arteries. The BAMBI−/− genotype mice showed accelerated luminal endothelial repair at 2 weeks and a highly unusual increase in arterial wall neovascularization compared to WT mice. The exuberant intimal and medial neovessel formation with BAMBI−/− genotype was also associated with significant red blood cell extravasation. The bleeding into the neointima at 2 weeks transiently increased it’s area in the BAMBI−/−genotype despite the faster luminal endothelial repair in this group. Vascular smooth muscle cells were decreased at 2 weeks in BAMBI−/− mice, but comparable to wild type at 4 weeks.

Conclusions/Significance

The absence of BAMBI results in a highly unusual surge in arterial wall neovascularization that surprisingly mimiks features of intra-plaque hemorrhage of advanced atheroma in a mechanical injury model. This suggests important effects of BAMBI on arterial EC homeostasis that need to be further studied in a model of inflammatory atherosclerosis.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号