首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   16篇
  177篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   8篇
  2017年   4篇
  2016年   8篇
  2015年   12篇
  2014年   13篇
  2013年   17篇
  2012年   10篇
  2011年   18篇
  2010年   9篇
  2009年   7篇
  2008年   10篇
  2007年   12篇
  2006年   10篇
  2005年   3篇
  2004年   7篇
  2003年   4篇
  2002年   9篇
  1998年   2篇
  1991年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
51.
Functional analysis of granzyme M and its role in immunity to infection   总被引:1,自引:0,他引:1  
Cytotoxic lymphocytes express a large family of granule serine proteases, including one member, granzyme (Grz)M, with a unique protease activity, restricted expression, and distinct gene locus. Although a number of Grzs, including GrzM, have been shown to mediate target cell apoptosis in the presence of perforin, the biological activity of Grz has been restricted to control of a number of viral pathogens, including two natural mouse pathogens, ectromelia, and murine CMV (MCMV). In this article, we describe the first reported gene targeting of GrzM in mice. GrzM-deficient mice display normal NK cell/T cell development and homeostasis and intact NK cell-mediated cytotoxicity of tumor targets as measured by membrane damage and DNA fragmentation. GrzM-deficient mice demonstrated increased susceptibility to MCMV infection typified by the presence of more viral inclusions and transiently higher viral burden in the visceral organs of GrzM-deficient mice compared with wild-type (WT) mice. The cytotoxicity of NK cells from MCMV-infected GrzM-deficient mice remained unchanged and, like WT control mice, GrzM-deficient mice eventually effectively cleared MCMV infection from the visceral organs. In contrast, GrzM-deficient mice were as resistant as WT control mice to mouse pox ectromelia infection, as well as challenge with a number of NK cell-sensitive tumors. These data confirm a role for GrzM in the host response to MCMV infection, but suggest that GrzM is not critical for NK cell-mediated cytotoxicity.  相似文献   
52.
In contrast to acute preparations such as the exteriorized mesentery or the cremaster muscle, chronically instrumented chamber models allow one to study the microcirculation under "physiological" conditions, i.e., in the absence of trauma-induced leukocyte rolling along the venular endothelium. To underscore the importance of studying the naive microcirculation, we implanted titanium dorsal skinfold chambers in hamsters and used intravital fluorescence microscopy to study venular leukocyte rolling in response to ischemia-reperfusion injury or extracorporeal blood circulation. The experiments were performed in chambers that fulfilled all well-established criteria for a physiological microcirculation as well as in chambers that showed various extents of leukocyte rolling due to trauma, hemorrhage, or inflammation. In ideal chambers with a physiological microcirculation (<30 rolling leukocytes/mm vessel circumference in 30 s), ischemia-reperfusion injury and extracorporeal blood circulation significantly stimulated leukocyte rolling along the venular endothelium and, subsequently, firm leukocyte adhesion. In contrast, both stimuli failed to elicit leukocyte rolling in borderline chambers (30-100 leukocytes/mm), and in blatantly inflamed chambers with yet higher numbers of rolling leukocytes at baseline (>100 leukocytes/mm), we observed a paradoxical reduction of leukocyte rolling after ischemia-reperfusion injury or extracorporeal blood circulation. A similar effect was observed when we superfused leukotriene B4 (LTB4) onto the chamber tissue. The initial increase in leukocyte rolling in response to an LTB4 challenge was reversed by a second superfusion 90 min later. These observations underscore 1) the benefit of studying leukocyte-endothelial cell interaction in chronically instrumented chamber models and 2) the necessity to strictly adhere to well-established criteria of a physiological microcirculation.  相似文献   
53.
Relative to the gray matter, there is a paucity of information regarding white matter biochemical alterations and their contribution to Alzheimer's disease (AD). Biochemical analyses of AD white matter combining size-exclusion, normal phase, and gas chromatography, immunoassays, and Western blotting revealed increased quantities of Abeta40 and Abeta42 in AD white matter accompanied by significant decreases in the amounts of myelin basic protein, myelin proteolipid protein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase. In addition, the AD white matter cholesterol levels were significantly decreased while total fatty acid content was increased. In some instances, these white matter biochemical alterations were correlated with patient apolipoprotein E genotype, Braak stage, and gender. Our observations suggest that extensive white matter axonal demyelination underlies Alzheimer's pathology, resulting in loss of capacitance and serious disturbances in nerve conduction, severely damaging brain function. These white matter alterations undoubtedly contribute to AD pathogenesis and may represent the combined effects of neuronal degeneration, microgliosis, oligodendrocyte injury, microcirculatory disease, and interstitial fluid stasis. To accurately assess the success of future therapeutic interventions, it is necessary to have a complete appreciation of the full scope and extent of AD pathology.  相似文献   
54.
BackgroundChikungunya virus (CHIKV) and o’nyong nyong virus (ONNV) are mosquito-borne alphaviruses endemic in East Africa that cause acute febrile illness and arthritis. The objectives of this study were to measure the seroprevalence of CHIKV and ONNV in coastal Kenya and link it to demographics and other risk factors.MethodologyDemographic and exposure questionnaires were administered to 1,848 participants recruited from two village clusters (Milalani-Nganja and Vuga) in 2009. Sera were tested for alphavirus exposure using standardized CHIKV IgG ELISA protocols and confirmed with plaque reduction neutralization tests (PRNT). Logistic regression models were used to determine the variables associated with seropositivity. Weighted K test for global clustering of houses with alphavirus positive participants was performed for distance ranges of 50–1,000 meters, and G* statistic and kernel density mapping were used to identify locations of higher seroprevalence.Conclusions/SignificanceAlphavirus exposure, particularly ONNV exposure, is common in coastal Kenya with ongoing interepidemic transmission of both ONNV and CHIKV. Women and adults were more likely to be seropositive. Household location may be a defining factor for the ecology of alphaviral transmission in this region.  相似文献   
55.
Several enzymes acting on sucrose are found in glycoside hydrolase family 13 (the α–amylase family). They all transfer a glucosyl moiety from sucrose to an acceptor, but the products can be very different. The structure of a variant of one of these, the Glu328Gln mutant of Neisseria polysaccharea amylosucrase, has been determined in a ternary complex with sucrose and an oligosaccharide to 2.16 Å resolution using x-ray crystallography. Sucrose selectively binds in the active site and the oligosaccharide only binds at surface sites. When this structure is compared to structures of other enzymes acting on sucrose from glycoside hydrolase family 13, it is found that the active site residues are very similar around the glucose part of sucrose while much variation is seen around the fructose moiety.  相似文献   
56.
57.
58.
Fong DH  Xiong B  Hwang J  Berghuis AM 《PloS one》2011,6(5):e19589
Antibiotic resistance is recognized as a growing healthcare problem. To address this issue, one strategy is to thwart the causal mechanism using an adjuvant in partner with the antibiotic. Aminoglycosides are a class of clinically important antibiotics used for the treatment of serious infections. Their usefulness has been compromised predominantly due to drug inactivation by aminoglycoside-modifying enzymes, such as aminoglycoside phosphotransferases or kinases. These kinases are structurally homologous to eukaryotic Ser/Thr and Tyr protein kinases and it has been shown that some can be inhibited by select protein kinase inhibitors. The aminoglycoside kinase, APH(3')-IIIa, can be inhibited by CKI-7, an ATP-competitive inhibitor for the casein kinase 1. We have determined that CKI-7 is also a moderate inhibitor for the atypical APH(9)-Ia. Here we present the crystal structures of CKI-7-bound APH(3')-IIIa and APH(9)-Ia, the first structures of a eukaryotic protein kinase inhibitor in complex with bacterial kinases. CKI-7 binds to the nucleotide-binding pocket of the enzymes and its binding alters the conformation of the nucleotide-binding loop, the segment homologous to the glycine-rich loop in eukaryotic protein kinases. Comparison of these structures with the CKI-7-bound casein kinase 1 reveals features in the binding pockets that are distinct in the bacterial kinases and could be exploited for the design of a bacterial kinase specific inhibitor. Our results provide evidence that an inhibitor for a subset of APHs can be developed in order to curtail resistance to aminoglycosides.  相似文献   
59.

Background

Studies investigating the prevention of weight gain differ considerably in design and quality, which impedes pooling them in conventional meta-analyses, the basis for evidence-based policy making. This study is aimed at quantifying the prospective association between measured physical activity and fat mass in children, using a meta-analysis method that allows inclusion of heterogeneous studies by adjusting for differences through eliciting and incorporating expert opinion.

Methods

Studies on prevention of weight gain using objectively measured exposure and outcome were eligible; they were adopted from a recently published systematic review. Differences in study quality and design were considered as internal and external biases and captured in checklists. Study results were converted to correlation coefficients and biases were considered either additive or proportional on this scale. The extent and uncertainty of biases in each study were elicited in a formal process by six quantitatively-trained assessors and five subject-matter specialists. Biases for each study were combined across assessors using median pooling. Results were combined across studies by random-effects meta-analysis.

Results

The combined correlation of the unadjusted results from the six studies was −0.04 (95%CI: −0.22, 0.14) with considerable heterogeneity (I2 = 78%), which makes it difficult to interpret the result. After bias-adjustment the pooled correlation was −0.01 (95%CI: −0.18, 0.16) with apparent study compatibility (I2 = 0%).

Conclusion

By using this method the prospective association between physical activity and fat mass could be quantitatively synthesized; the result suggests no association. Objectively measured physical activity may not be the key determinant of unhealthy weight gain in children.  相似文献   
60.
Drosophila melanogaster has been widely used as a model of human Mendelian disease, but its value in modeling complex disease has received little attention. Fly models of complex disease would enable high-resolution mapping of disease-modifying loci and the identification of novel targets for therapeutic intervention. Here, we describe a fly model of permanent neonatal diabetes mellitus and explore the complexity of this model. The approach involves the transgenic expression of a misfolded mutant of human preproinsulin, hINSC96Y, which is a cause of permanent neonatal diabetes. When expressed in fly imaginal discs, hINSC96Y causes a reduction of adult structures, including the eye, wing, and notum. Eye imaginal discs exhibit defects in both the structure and the arrangement of ommatidia. In the wing, expression of hINSC96Y leads to ectopic expression of veins and mechano-sensory organs, indicating disruption of wild-type signaling processes regulating cell fates. These readily measurable “disease” phenotypes are sensitive to temperature, gene dose, and sex. Mutant (but not wild-type) proinsulin expression in the eye imaginal disc induces IRE1-mediated XBP1 alternative splicing, a signal for endoplasmic reticulum stress response activation, and produces global change in gene expression. Mutant hINS transgene tester strains, when crossed to stocks from the Drosophila Genetic Reference Panel, produce F1 adults with a continuous range of disease phenotypes and large broad-sense heritability. Surprisingly, the severity of mutant hINS-induced disease in the eye is not correlated with that in the notum in these crosses, nor with eye reduction phenotypes caused by the expression of two dominant eye mutants acting in two different eye development pathways, Drop (Dr) or Lobe (L), when crossed into the same genetic backgrounds. The tissue specificity of genetic variability for mutant hINS-induced disease has, therefore, its own distinct signature. The genetic dominance of disease-specific phenotypic variability in our model of misfolded human proinsulin makes this approach amenable to genome-wide association study in a simple F1 screen of natural variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号