首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   8篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
排序方式: 共有62条查询结果,搜索用时 17 毫秒
11.
12.
Hydrogen peroxide (H2O2) is now recognised as a key signalling molecule in eukaryotes. In plants, H2O2 is involved in regulating stomatal closure, gravitropic responses, gene expression and programmed cell death. Although several kinases, such as oxidative signal-inducible 1 (OXI1) kinase and mitogen-activated protein kinases are known to be activated by exogenous H2O2, little is known about the proteins that directly react with H2O2. Here, we utilised a proteomic approach, using iodoacetamide-based fluorescence tagging of proteins in conjunction with mass spectrometric analysis, to identify several proteins that might be potential targets of H2O2 in the cytosolic fraction of Arabidopsis thaliana, the most prominent of which was cytosolic glyceraldehyde 3-phosphate dehydrogenase (cGAPDH; EC 1.2.1.12). cGAPDH from Arabidopsis is inactivated by H2O2 in vitro, and this inhibition is reversible by the subsequent addition of reductants such as reduced glutathione (GSH). It has been suggested recently that Arabidopsis GAPDH has roles outside of its catalysis as part of glycolysis, while in other systems this includes that of mediating reactive oxygen species (ROS) signalling. Here, we suggest that cGAPDH in Arabidopsis might also have such a role in mediating ROS signalling in plants.  相似文献   
13.
Histidine kinases have been shown to mediate responses to endogenous and exogenous stimuli in organisms such as yeast, bacteria and plants. In the model plant Arabidopsis, histidine kinases have been shown to function in hormone signaling, and abiotic and biotic stress responses. More recently, the least characterized of the Arabidopsis histidine kinases, AHK5, was demonstrated to function in resistance toward the virulent bacterium Pseudomonas syringae pv tomato DC3000 (PstDC3000) and the necrotrophic fungus Botrytis cinerea, and as a negative regulator of tolerance toward salinity. Here, we present data which indicate that AHK5 also impacts on drought stress resistance and on the outcome of an incompatible interaction with avrRpm1-expressing PstDC3000 (PstDC3000 (avrRpm1)). We present a model which proposes a role for reactive oxygen species (ROS) and hormones in integrating abiotic and biotic stress responses via AHK5.  相似文献   
14.
Bai X  Todd CD  Desikan R  Yang Y  Hu X 《Plant physiology》2012,158(2):725-736
N-Acyl-homoserine-lactones (AHLs) are bacterial quorum-sensing signaling molecules that regulate population density. Recent evidence demonstrates their roles in plant defense responses and root development. Hydrogen peroxide (H(2)O(2)), nitric oxide (NO), and cyclic GMP (cGMP) are essential messengers that participate in various plant physiological processes, but how these messengers modulate the plant response to N-acyl-homoserine-lactone signals remains poorly understood. Here, we show that the N-3-oxo-decanoyl-homoserine-lactone (3-O-C10-HL), in contrast to its analog with an unsubstituted branch chain at the C3 position, efficiently stimulated the formation of adventitious roots and the expression of auxin-response genes in explants of mung bean (Vigna radiata) seedlings. This response was mimicked by the exogenous application of auxin, H(2)O(2), NO, or cGMP homologs but suppressed by treatment with scavengers or inhibitors of H(2)O(2), NO, or cGMP metabolism. The 3-O-C10-HL treatment enhanced auxin basipetal transport; this effect could be reversed by treatment with H(2)O(2) or NO scavengers but not by inhibitors of cGMP synthesis. Inhibiting 3-O-C10-HL-induced H(2)O(2) or NO accumulation impaired auxin- or 3-O-C10-HL-induced cGMP synthesis; however, blocking cGMP synthesis did not affect auxin- or 3-O-C10-HL-induced H(2)O(2) or NO generation. Additionally, cGMP partially rescued the inhibitory effect of H(2)O(2) or NO scavengers on 3-O-C10-HL-induced adventitious root development and auxin-response gene expression. These results suggest that 3-O-C10-HL, unlike its analog with an unmodified branch chain at the C3 position, can accelerate auxin-dependent adventitious root formation, possibly via H(2)O(2)- and NO-dependent cGMP signaling in mung bean seedlings.  相似文献   
15.
Angiosperm stigmas have long been known to exhibit high levels of peroxidase activity when they are mature and most receptive to pollen but the biological function of stigma peroxidases is not known. A novel stigma-specific class III peroxidase gene, SSP (stigma-specific peroxidase) expressed exclusively in the stigmas of Senecio squalidus L. (Asteraceae) has recently been identified. Expression of SSP is confined to the specialized secretory cells (papillae) that compose the stigma epidermis. The literature on stigma peroxidases and hypotheses on their function(s) is reviewed here before further characterization of SSP and an attempt to determine its function are described. It is shown that SSP is localized to cytoplasmic regions of stigmatic papillae and also to the surface of these cells, possibly as a component of the pellicle, a thin layer of condensed protein typical of "dry" stigmas. Enzyme assays on recombinant SSP showed it to be a peroxidase with a preference for diphenolic substrates (ABTS and TMB) and a pH optimum of approximately 4.5. In such assays the peroxidase activity of SSP was low when compared with horseradish peroxidase. To explore the function of SSP and other stigmatic peroxidases, levels of reactive oxygen species (ROS) in stigmas of S. squalidus were investigated. Relatively large amounts of ROS, principally H(2)O(2), were detected in S. squalidus stigmas where most ROS/H(2)O(2) was localized to the stigmatic papillae, the location of SSP. These observations are discussed in the context of possible functions for SSP, other peroxidases, and ROS in the stigmas of angiosperms.  相似文献   
16.
AimsAlpha-lipoic acid (LA) is a commonly used dietary supplement that exerts anti-oxidant and anti-inflammatory effects in vivo and in vitro. We investigated the mechanisms by which LA may confer protection in models of established atherosclerosis.Main methodsWatanabe heritable hyperlipidemic (WHHL) rabbits were fed with high cholesterol chow for 6 weeks and then randomized to receive either high cholesterol diet alone or combined with LA (20 mg/kg/day) for 12 weeks. Vascular function was analyzed by myography. The effects of LA on T cell migration to chemokine gradients was assessed by Boyden chamber. NF-κB activation was determined by measuring translocation and electrophoresis migration shift assay (EMSA).Key findingsLA decreased body weight by 15 ± 5% without alterations in lipid parameters. Magnetic Resonance Imaging (MRI) analysis demonstrated that LA reduced atherosclerotic plaques in the abdominal aorta, with morphological analysis revealing reduced lipid and inflammatory cell content. Consistent with its effect on atherosclerosis, LA improved vascular reactivity (decreased constriction to angiotensin II and increased relaxation to acetylcholine and insulin), inhibited NF-κB activation, and decreased oxidative stress and expression of key adhesion molecules in the vasculature. LA reduced T cell content in atherosclerotic plaque in conjunction with decreasing ICAM and CD62L (l-selectin) expression. These effects were confirmed by demonstration of a direct effect of LA in reducing T cell migration in response to CCL5 and SDF-1 and decreasing T cell adhesion to the endothelium by intra-vital microscopy.SignificanceThe present findings offer a mechanistic insight into the therapeutic effects of LA on atherosclerosis.  相似文献   
17.
  相似文献   
18.
The linkage region constituents, namely, 2-acetamido-2-deoxy-beta-D-glucopyranose and asparagine are conserved in the N-glycoproteins of all the eukaryotes. The present work is aimed at understanding the reasons for the occurrence of GlcNAc and Asn as the linkage region constituents. A total of six sugar amides have been designed as models and analogs of the linkage region and their crystal structures have been solved. This is the first report on the X-ray crystallographic investigation of the effect of systematic changes in the linkage sugar as well as its aglycon moiety on the N-glycosidic torsion, psi(N) (O5-C1-N1-C1(')). This also forms the first report on the crystal structure of a model of L-RhabetaAsn, a variant linkage found in the surface layer glycoprotein of Bacillus stearothermophillus. Among the models and analogs examined, the acetamido derivatives of Man and Xyl, the linkage sugars of O-glycoproteins, show a psi(N) value of -114.5 degrees and -121.2 degrees, respectively, deviating maximum from the value of -89.8 degrees reported for the model compound GlcNAcbetaNHAc. The L-Rha and Gal derivatives also show noticeable deviations. The psi(N) values, -89.5 degrees and -91.0 degrees, of the propionamide derivatives of Glc and GlcNAc (analogs of GlcbetaGln and GlcNAcbetaGln, respectively) agree well with those (-93.8 degrees and -89.8 degrees ) reported for their corresponding acetamide derivatives suggesting Gln could serve as well as Asn as the linkage region amino acid. However, the rotational freedom about the additional C-C bond would lead to altered rigidity of the linkage region. An analysis of packing reveals that the molecular assembly of these compounds is driven by different infinite and finite chains of hydrogen bonds. The double pillaring of hydrogen bonds involving the amide groups at C1 and C2 is seen as a unique packing feature characteristic of beta-1-N-acyl derivatives of GlcNAc. Based on the findings of the present study, it is speculated that the linkage region constituents of the eukaryotic N-glycoproteins appear to fulfill three essential structural requirements: rigidity, planarity, and linearity and these are met by the trisaccharide core and Asn at the linkage region.  相似文献   
19.
20.
ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells   总被引:19,自引:0,他引:19  
Increased synthesis and redistribution of the phytohormone abscisic acid (ABA) in response to water deficit stress initiates an intricate network of signalling pathways in guard cells leading to stomatal closure. Despite the large number of ABA signalling intermediates that are known in guard cells, new discoveries are still being made. Recently, the reactive oxygen species hydrogen peroxide (H2O2) and the reactive nitrogen species nitric oxide (NO) have been identified as key molecules regulating ABA-induced stomatal closure in various species. As with many other physiological responses in which H2O2 and NO are involved, stomatal closure in response to ABA also appears to require the tandem synthesis and action of both these signalling molecules. Recent pharmacological and genetic data have identified NADPH oxidase as a source of H2O2, whilst nitrate reductase has been identified as a source of NO in Arabidopsis guard cells. Some signalling components positioned downstream of H2O2 and NO are calcium, protein kinases and cyclic GMP. However, the exact interaction between the various signalling components in response to H2O2 and NO in guard cells remains to be established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号