首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   11篇
  2022年   4篇
  2021年   3篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   7篇
  2008年   6篇
  2007年   9篇
  2006年   3篇
  2005年   8篇
  2004年   4篇
  2003年   10篇
  2002年   5篇
  2001年   9篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   8篇
  1990年   2篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1971年   2篇
排序方式: 共有195条查询结果,搜索用时 31 毫秒
21.
The aim of this study was to evaluate the behavior of human Dental Pulp Stem Cells (DPSCs), as well as human osteoblasts, when challenged on a Biocoral scaffold, which is a porous natural hydroxyapatite. For this purpose, human DPSCs were seeded onto a three-dimensional (3D) Biocoral scaffold or on flask surface (control). Either normal or rotative (3D) cultures were performed. Scanning electron microscopic analyses, at 8, 24 and 48 h of culture showed that cells did not adhere on the external surface, but moved into the cavities inside the Biocoral structure. After 7, 15 and 30 days of culture, morphological and molecular analyses suggested that the Biocoral scaffold leads DPSCs to hook into the cavities where these cells quickly start to secrete the extra cellular matrix (ECM) and differentiate into osteoblasts. Control human osteoblasts also moved into the internal cavities where they secreted the ECM. Histological sections revealed a diffuse bone formation inside the Biocoral samples seeded with DPSCs or human osteoblasts, where the original scaffold and the new secreted biomaterial were completely integrated and cells were found within the remaining cavities. In addition, RT-PCR analyses showed a significant increase of osteoblast-related gene expression and, above all, of those genes highly expressed in mineralized tissues, including osteocalcin, OPN and BSP. Furthermore, the effects on the interaction between osteogenesis and angiogenesis were observed and substantiated by ELISA assays. Taken together, our results provide clear evidence that DPSCs differentiated into osteoblasts, forming a biocomplex made of Biocoral, ECM and differentiated cells.  相似文献   
22.
Cerebrospinal fluid (CSF) is secreted from several different central nervous system (CNS) structures, and any changes in the CSF composition will accurately reflect pathological processes. Proteomics offers a comprehensive bird's eye view to analyze CSF proteins at a systems level. This paper reviews the variety of analytical methods that have been used for proteomics analysis of CSF, including sample preparation, two-dimensional liquid and gel electrophoresis, mass spectrometry, bioinformatics, and non-gel methods. The differentially expressed CSF proteins that have been identified by proteomics methods are discussed.  相似文献   
23.
In order to elucidate the roles of human growth hormone (hGH) in the normal (control) pituitary and in adenomas, the hGH isoforms in the human pituitary were analyzed with two-dimensional gel electrophoresis, immobilized metal affinity column (Ga(+3)) chromatography, mass spectrometry (MS), and bioinformatics. Twenty-four hGH-containing proteins, with significantly different expression proportions of their isoforms were found. The proportions of isoforms were as follows: isoform 1 (87.5%) > isoform 2 (8.1%) > isoform 3 (3.3%) > isoform 4 (1.1%). Deamidation of asparagine to aspartate was identified with matrix-assisted laser desorption/ionization-time of flight MS. Tandem mass spectrometry data demonstrated that hGH is a phosphoprotein (spot 6); phosphorylation was found at Ser-77 in the tryptic peptide (68)YSFLQNPQTSLCFSESIPTPSNR(90), at Ser-176 in the tryptic peptide (172)FDTNSHNDDALLK(184), and at Ser-132 in the peptide (126)SLVYGASDSNVYDLLK(141). The phosphorylation sites at Ser-77 and Ser-176 were consistent with computer-program predictions (NetPhos). These results provide novel clues for further studies of the functions, and mechanisms of action, of hGH in the human pituitary and in growth hormone-related diseases.  相似文献   
24.
Proteins secreted to mammalian cell supernatants are usually in a low concentration and purity, due to the limitation of the expression systems or the presence of a large amount of contaminant proteins from the cell medium. So, initial protein recovery from cell supernatants requires of a highly specific chromatography step. We compared several purification methods based on affinity chromatography for purification of proteins from cell culture supernatants: metal chelate affinity, strep-tag and immunopurification with a monoclonal antibody. Soluble receptor glycoproteins were engineered with the corresponding peptide tag at their C-terminal end. The proteins were expressed in 293T cells and secreted to the cell supernatant, as monitored by sandwich ELISA. Supernatants were run through the different chromatography columns and several purification-related parameters determined. While all column-retained proteins were easily eluted, the chelating and immunopurification chromatography gave the highest yield and the latest method provided a sample with the highest purity. So, in spite of its cost, immunopurification chromatography gave optimal results for purification of a low abundance protein from a cell supernatant. Finally, we applied a protein expression system together with immunopurification chromatography for preparation of a glycoprotein for crystallization.  相似文献   
25.
26.

Key message

Rice breeding programs based on pedigree schemes can use a genomic model trained with data from their working collection to predict performances of progenies produced through rapid generation advancement.

Abstract

So far, most potential applications of genomic prediction in plant improvement have been explored using cross validation approaches. This is the first empirical study to evaluate the accuracy of genomic prediction of the performances of progenies in a typical rice breeding program. Using a cross validation approach, we first analyzed the effects of marker selection and statistical methods on the accuracy of prediction of three different heritability traits in a reference population (RP) of 284 inbred accessions. Next, we investigated the size and the degree of relatedness with the progeny population (PP) of sub-sets of the RP that maximize the accuracy of prediction of phenotype across generations, i.e., for 97 F5–F7 lines derived from biparental crosses between 31 accessions of the RP. The extent of linkage disequilibrium was high (r 2 = 0.2 at 0.80 Mb in RP and at 1.1 Mb in PP). Consequently, average marker density above one per 22 kb did not improve the accuracy of predictions in the RP. The accuracy of progeny prediction varied greatly depending on the composition of the training set, the trait, LD and minor allele frequency. The highest accuracy achieved for each trait exceeded 0.50 and was only slightly below the accuracy achieved by cross validation in the RP. Our results thus show that relatively high accuracy (0.41–0.54) can be achieved using only a rather small share of the RP, most related to the PP, as the training set. The practical implications of these results for rice breeding programs are discussed.
  相似文献   
27.
Spermidine/spermine N1-acetyltransferase (cSAT), a key enzyme in polyamine degradation, is induced by various hepatotoxins and liver tumor promoters. In this paper we demonstrate that physiological factors, such as cytokines, control cSAT expression in HepG2 human hepatocarcinoma cells. Hepatocyte growth factor (HGF) induced the cSAT mRNA precursor (3.5 kb) at 4 h. The mature form of mRNA (1.3 kb) increased 6–8-fold between 8 and 10 h, and remained elevated until 18 h. An increase in cSAT activity (2-fold) and high levels of N1-acetylspermidine were observed concomitantly. Interleukin-1β (IL-1β) enhanced cSAT expression (both mRNA and enzyme activity) similar to HGF, while tumor necrosis factor-α (TNFα) was less effective. This system also provides a useful means for examining the involvement of negative and positive changes of polyamines in the induction of cSAT and c-jun, a gene that participates in the control of cSAT expression. α-Difluoromethylornithine (DFMO) pretreatment, by lowering putrescine and spermidine in HGF- or IL-1β-treated cells, prevented the induction of cSAT. This effect was reversed by exogenous putrescine or spermidine. IL-1β induced c-jun mRNA more than HGF. DFMO prevented almost completely the enhancement of c-jun mRNA expression by IL-1β, and this effect was reversed by exogenous putrescine or spermidine. Therefore, we suggest that cSAT and c-jun expression is specifically regulated by polyamine-mediated mechanisms in IL-1β treated HepG2 cells. Since cSAT is inducibile by cytokines that control tumor metabolism and growth as well as tumor-host interaction, we hypothesize an involvement of cSAT in hepatoma growth. J. Cell. Physiol. 174:125–134, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
28.

Background

EPH (erythropoietin-producing hepatocellular) receptors are clinically relevant targets in several malignancies. This report describes the effects of GLPG1790, a new potent pan-EPH inhibitor, in human embryonal rhabdomyosarcoma (ERMS) cell lines.

Methods

EPH-A2 and Ephrin-A1 mRNA expression was quantified by real-time PCR in 14 ERMS tumour samples and in normal skeletal muscle (NSM). GLPG1790 effects were tested in RD and TE671 cell lines, two in vitro models of ERMS, by performing flow cytometry analysis, Western blotting and immunofluorescence experiments. RNA interfering experiments were performed to assess the role of specific EPH receptors. Radiations were delivered using an x-6 MV photon linear accelerator. GLPG1790 (30 mg/kg) in vivo activity alone or in combination with irradiation (2 Gy) was determined in murine xenografts.

Results

Our study showed, for the first time, a significant upregulation of EPH-A2 receptor and Ephrin-A1 ligand in ERMS primary biopsies in comparison to NSM. GLPG1790 in vitro induced G1-growth arrest as demonstrated by Rb, Cyclin A and Cyclin B1 decrease, as well as by p21 and p27 increment. GLPG1790 reduced migratory capacity and clonogenic potential of ERMS cells, prevented rhabdosphere formation and downregulated CD133, CXCR4 and Nanog stem cell markers. Drug treatment committed ERMS cells towards skeletal muscle differentiation by inducing a myogenic-like phenotype and increasing MYOD1, Myogenin and MyHC levels. Furthermore, GLPG1790 significantly radiosensitized ERMS cells by impairing the DNA double-strand break repair pathway. Silencing of both EPH-A2 and EPH-B2, two receptors preferentially targeted by GLPG1790, closely matched the effects of the EPH pharmacological inhibition. GLPG1790 and radiation combined treatments reduced tumour mass by 83% in mouse TE671 xenografts.

Conclusions

Taken together, our data suggest that altered EPH signalling plays a key role in ERMS development and that its pharmacological inhibition might represent a potential therapeutic strategy to impair stemness and to rescue myogenic program in ERMS cells.
  相似文献   
29.
30.
Metastatic cells switch between different modes of migration through supramolecular plasticity mechanism(s) still largely unknown. The aim of the present paper was to clarify some molecular aspects of the epigenetic control of migration of 1833-bone metastatic cells compared to MDA-MB231-parental mammary carcinoma cells. Active c-Src overexpression enhanced 1833-cell spontaneous migration and CXCR4-mediated chemoinvasion toward CXCL12 ligand. Only in metastatic cells, in fact, c-Src seemed to stabilize nuclear CXCR4-protein receptor possibly due to tyrosine phosphorylation, by impairing protein-degradative smear and causing instead an electrophoretic-mobility shift; the cytosolic steady-state level of CXCR4 was enhanced, and the protein appeared also phosphorylated. These findings suggested the triggering of unique signaling pathways in metastasis for homing of breast-cancer cells to congenial environment of specific organs. Microenvironmental stimuli activating c-Src might influence Ets1 binding to CXCR4 promoter and consequent transactivation, as well as CXCR4 post-translational regulatory mechanisms such as phosphorylation. Enhancement of Ets1 activity and CXCR4 induction by c-Src overexpression were prevented by histone deacetylase (HDAC) blockade. In contrast, HDAC inhibition with trichostatin A increased cytosolic phosphorylated CXCR4 expression in MDA-MB231 cells, but Ets1 involvement was practically unneeded. c-Src might be suggested as a bio-marker predicting metastasis sensitivity patterns to HDAC inhibitors. Rationally designed and individualized therapy may become possible as more is learned about the target molecules of HDAC's inhibitory agents and their roles, as undertaken for CXCR4 that is likely to be crucial for homing, angiogenesis and survival in a c-Src-dependent manner in bone-metastatic mammary cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号