首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7304篇
  免费   574篇
  国内免费   1篇
  7879篇
  2023年   57篇
  2022年   107篇
  2021年   222篇
  2020年   141篇
  2019年   153篇
  2018年   172篇
  2017年   152篇
  2016年   252篇
  2015年   421篇
  2014年   445篇
  2013年   527篇
  2012年   675篇
  2011年   635篇
  2010年   391篇
  2009年   359篇
  2008年   500篇
  2007年   424篇
  2006年   413篇
  2005年   351篇
  2004年   310篇
  2003年   245篇
  2002年   260篇
  2001年   47篇
  2000年   42篇
  1999年   50篇
  1998年   43篇
  1997年   36篇
  1996年   32篇
  1995年   34篇
  1994年   28篇
  1993年   17篇
  1992年   39篇
  1991年   29篇
  1990年   21篇
  1989年   27篇
  1988年   14篇
  1987年   18篇
  1986年   21篇
  1985年   19篇
  1984年   10篇
  1983年   10篇
  1982年   12篇
  1981年   12篇
  1980年   15篇
  1979年   7篇
  1978年   9篇
  1977年   12篇
  1976年   8篇
  1975年   7篇
  1973年   9篇
排序方式: 共有7879条查询结果,搜索用时 15 毫秒
21.
Over the past decade a number of bioinformatics tools have been developed that use genomic sequences as input to predict to which parts of a microbe the immune system will react, the so-called epitopes. Many predicted epitopes have later been verified experimentally, demonstrating the usefulness of such predictions. At the same time, simulation models have been developed that describe the dynamics of different immune cell populations and their interactions with microbes. These models have been used to explain experimental findings where timing is of importance, such as the time between administration of a vaccine and infection with the microbe that the vaccine is intended to protect against. In this paper, we outline a framework for integration of these two approaches. As an example, we develop a model in which HIV dynamics are correlated with genomics data. For the first time, the fitness of wild type and mutated virus are assessed by means of a sequence-dependent scoring matrix, derived from a BLOSUM matrix, that links protein sequences to growth rates of the virus in the mathematical model. A combined bioinformatics and systems biology approach can lead to a better understanding of immune system-related diseases where both timing and genomic information are of importance.  相似文献   
22.
Isopeptidases are essential regulators of protein ubiquitination and sumoylation. However, only two families of SUMO isopeptidases are at present known. Here, we report an activity‐based search with the suicide inhibitor haemagglutinin (HA)‐SUMO‐vinylmethylester that led to the identification of a surprising new SUMO protease, ubiquitin‐specific protease‐like 1 (USPL1). Indeed, USPL1 neither binds nor cleaves ubiquitin, but is a potent SUMO isopeptidase both in vitro and in cells. C13orf22l—an essential but distant zebrafish homologue of USPL1—also acts on SUMO, indicating functional conservation. We have identified invariant USPL1 residues required for SUMO binding and cleavage. USPL1 is a low‐abundance protein that colocalizes with coilin in Cajal bodies. Its depletion does not affect global sumoylation, but causes striking coilin mislocalization and impairs cell proliferation, functions that are not dependent on USPL1 catalytic activity. Thus, USPL1 represents a third type of SUMO protease, with essential functions in Cajal body biology.  相似文献   
23.
24.
For over the past 20 years, a remarkable development in the study and search of natural products has been observed. This is linked to a new market trend towards ecology and also due to new regulations. This could be a rupture, but also a real booster for creativity. Usually, in the flavor and fragrance field, creativity was boosted by the arrival of new synthetic molecules. Naturals remained the traditional, century‐old products, protected by secrecy and specific know‐how from each company. Regulatory restrictions or eco‐friendly certification constraints like hexane‐free processes triggered an important brainstorming in the industry. As a result, we developed new eco‐friendly processes including supercritical CO2 extraction, allowing fresh plants to be used to obtain industrial flower extracts (Jasmine Grandiflorum, Jasmine Sambac, Orange blossom). These extracts are analyzed by GC, GC/MS, GC? O, and HPTLC techniques. New or unusual raw materials can also be explored, but the resulting extracts have to be tested for safety reasons. Some examples are described.  相似文献   
25.
Honey bees play a critical role in the maintenance of plant biodiversity and sustainability of food webs. In the past few decades, bees have been subjected to biotic and abiotic threats causing various colony disorders. Therefore, monitoring solutions to help beekeepers to improve bee health are necessary. Matrix‐assisted laser desorption ionization–mass spectrometry (MALDI–MS) profiling has emerged within this decade as a powerful tool to identify in routine micro‐organisms and is currently used in real‐time clinical diagnosis. MALDI BeeTyping is developed to monitor significant hemolymph molecular changes in honey bees upon infection with a series of entomopathogenic Gram‐positive and ‐negative bacteria. A Serratia marcescens strain isolated from one naturally infected honey bee collected from the field is also considered. A series of hemolymph molecular mass fingerprints is individually recorded and to the authors' knowledge, the first computational model harboring a predictive score of 97.92% and made of nine molecular signatures that discriminate and classify the honey bees’ systemic response to the bacteria is built. Hence, the model is challenged by classifying a training set of hemolymphs and an overall recognition of 91.93% is obtained. Through this work, a novel, time and cost saving high‐throughput strategy that addresses honey bee health on an individual scale is introduced.  相似文献   
26.
For decades, southern China has been considered to be an important source for emerging influenza viruses since key hosts live together in high densities in areas with intensive agriculture. However, the underlying conditions of emergence and spread of avian influenza viruses (AIV) have not been studied in detail, particularly the complex spatiotemporal interplay of viral transmission between wild and domestic ducks, two major actors of AIV epidemiology. In this synthesis, we examine the risks of avian influenza spread in Poyang Lake, an area of intensive free-ranging duck production and large numbers of wild waterfowl. Our synthesis shows that farming of free-grazing domestic ducks is intensive in this area and synchronized with wild duck migration. The presence of juvenile domestic ducks in harvested paddy fields prior to the arrival and departure of migrant ducks in the same fields may amplify the risk of AIV circulation and facilitate the transmission between wild and domestic populations. We provide evidence associating wild ducks migration with the spread of H5N1 in the spring of 2008 from southern China to South Korea, Russia, and Japan, supported by documented wild duck movements and phylogenetic analyses of highly pathogenic avian influenza H5N1 sequences. We suggest that prevention measures based on a modification of agricultural practices may be implemented in these areas to reduce the intensity of AIV transmission between wild and domestic ducks. This would require involving all local stakeholders to discuss feasible and acceptable solutions.  相似文献   
27.
Membranes of adjacent cells form intercellular junctional complexes to mechanically anchor neighbour cells (anchoring junctions), to seal the paracellular space and to prevent diffusion of integral proteins within the plasma membrane (tight junctions) and to allow cell-to-cell diffusion of small ions and molecules (gap junctions). These different types of specialised plasma membrane microdomains, sharing common adaptor molecules, particularly zonula occludens proteins, frequently present intermingled relationships where the different proteins co-assemble into macromolecular complexes and their expressions are co-ordinately regulated. Proteins forming gap junction channels (connexins, particularly) and proteins fulfilling cell attachment or forming tight junction strands mutually influence expression and functions of one another.  相似文献   
28.
Cohabitation during childhood has been described as a powerful inhibitor of later sexual interest in animals including humans (the 'Westermarck effect'), serving as a brother–sister incest avoidance mechanism. Mound-building mice Mus spicilegus display a strong social inhibition of reproduction, responsible for the absence of reproduction in over-wintering tumuli. To better understand the mechanisms responsible for triggering reproduction in this monogamous species, we formed 100 experimental couples of juveniles (35 d) and surveyed reproduction for 45 d. As expected, very few couples reproduced, which confirms the role of social familiarity in the inhibition of reproduction. Temporary separation (1 h or 24 h) of the two partners had little effect on reproductive success. However, pairing with a new partner, with or without prior isolation, significantly triggered reproduction. Observations of the first encounter between new partners revealed more agonistic and less affiliative behaviour than in controls (reunion of familiar partners). Interestingly, when the new partner was a sibling of the previous one, the behavioural analysis revealed an intermediate level of aggression, indicating that kinship with the previous partner was perceived and had consequences on social behaviour. Mice could therefore choose a new partner based on its relatedness to the previous mate. Mutual tolerance between new partners during the dyadic encounter was negatively correlated with subsequent reproduction. These results demonstrate the paramount role of social novelty in triggering reproduction in this monogamous mouse, and suggest a link between agonistic behaviour and sexual motivation. In the field, mound-building mice may need to engage in agonistic interactions so as to overcome the long-lasting social inhibition of reproduction in overwintering mounds.  相似文献   
29.
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号