首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1888篇
  免费   149篇
  国内免费   1篇
  2038篇
  2023年   17篇
  2022年   28篇
  2021年   54篇
  2020年   19篇
  2019年   27篇
  2018年   47篇
  2017年   42篇
  2016年   52篇
  2015年   106篇
  2014年   95篇
  2013年   142篇
  2012年   174篇
  2011年   129篇
  2010年   87篇
  2009年   78篇
  2008年   103篇
  2007年   102篇
  2006年   103篇
  2005年   71篇
  2004年   57篇
  2003年   40篇
  2002年   50篇
  2001年   23篇
  2000年   29篇
  1999年   30篇
  1998年   16篇
  1997年   17篇
  1996年   14篇
  1995年   16篇
  1994年   18篇
  1993年   11篇
  1992年   25篇
  1991年   19篇
  1990年   19篇
  1989年   17篇
  1988年   12篇
  1985年   8篇
  1983年   11篇
  1979年   6篇
  1977年   8篇
  1976年   6篇
  1975年   8篇
  1974年   7篇
  1973年   7篇
  1972年   11篇
  1971年   9篇
  1970年   6篇
  1969年   7篇
  1967年   6篇
  1966年   9篇
排序方式: 共有2038条查询结果,搜索用时 15 毫秒
71.
A three-step protocol for SAR development was introduced and applied to the SAR studies of the MK2 inhibitor program. Following this protocol, key conformational features and functional groups for improving MK2 inhibitor activity were quickly identified. Through this effort, the initial gap observed between in vitro binding activity and cellular activity in the lead identification stage was very much reduced. Compound 28 was identified with single digit binding activity (IC(50)=8 nM) and good cellular activity (EC(50)=310 nM). This provides further evidence that non-ATP-competitive binding MK2 inhibitors are feasible by targeting the outside ATP pocket.  相似文献   
72.
73.
A role for Rab5 in structuring the endoplasmic reticulum   总被引:3,自引:2,他引:3       下载免费PDF全文
The endoplasmic reticulum (ER) is a contiguous network of interconnected membrane sheets and tubules. The ER is differentiated into distinct domains, including the peripheral ER and nuclear envelope. Inhibition of two ER proteins, Rtn4a and DP1/NogoA, was previously shown to inhibit the formation of ER tubules in vitro. We show that the formation of ER tubules in vitro also requires a Rab family GTPase. Characterization of the 29 Caenorhabditis elegans Rab GTPases reveals that depletion of RAB-5 phenocopies the defects in peripheral ER structure that result from depletion of RET-1 and YOP-1, the C. elegans homologues of Rtn4a and DP1/NogoA. Perturbation of endocytosis by other means did not affect ER structure; the role of RAB-5 in ER morphology is thus independent of its well-studied requirement for endocytosis. RAB-5 and YOP-1/RET-1 also control the kinetics of nuclear envelope disassembly, which suggests an important role for the morphology of the peripheral ER in this process.  相似文献   
74.
The production of biosurfactant from Rhodococcus spp. MTCC 2574 was effectively enhanced by response surface methodology (RSM). Rhodococcus spp. MTCC 2574 was selected through screening of seven different Rhodococcus strains. The preliminary screening experiments (one-factor at a time) suggested that carbon source: mannitol, nitrogen source: yeast extract and meat peptone and inducer: n-hexadecane are the critical medium components. The concentrations of these four media components were optimized by using central composite rotatable design (CCRD) of RSM. The adequately high R2 value (0.947) and F score 19.11 indicated the statistical significance of the model. The optimum medium composition for biosurfactant production was found to contain mannitol (1.6 g/L), yeast extract (6.92 g/L), meat peptone (19.65 g/L), n-hexadecane (63.8 g/L). The crude biosurfactant was obtained from methyl tert-butyl ether extraction. The yield of biosurfactant before and after optimization was 3.2 g/L of and 10.9 g/L, respectively. Thus, RSM has increased the yield of biosurfactant to 3.4-fold. The crude biosurfactant decreased the surface tension of water from 72 mN/m to 30.8 mN/m (at 120 mg L(-1)) and achieved a critical micelle concentration (CMC) value of 120 mg L(-1).  相似文献   
75.
Topical or transdermal drug delivery is challenging because the skin acts as a natural and protective barrier. Therefore, several methods have been examined to increase the permeation of therapeutic molecules into and through the skin. One approach is to use the nanoparticulate delivery system. Starting with liposomes and other vesicular systems, several other types of nanosized drug carriers have been developed such as solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanoparticles and magnetic nanoparticles for dermatological applications. This review article discusses how different particulate systems can interact and penetrate into the skin barrier. In this review, the effectiveness of nanoparticles, as well as possible mode of actions of nanoparticles, is presented. In addition to nanoparticles, cell-penetrating peptide (CPP)-mediated drug delivery into the skin and the possible mechanism of CPP-derived delivery into the skin is discussed. Lastly, the effectiveness and possible mechanism of CPP-modified nanocarriers into the skin are addressed.  相似文献   
76.
Cancer treatment and therapy has moved from conventional chemotherapeutics to more mechanism-based targeted approach. Disturbances in the balance of histone acetyltransferase (HAT) and deacetylase (HDAC) leads to a change in cell morphology, cell cycle, differentiation, and carcinogenesis. In particular, HDAC plays an important role in carcinogenesis and therefore it has been a target for cancer therapy. Structurally diverse group of HDAC inhibitors are known. The broadest class of HDAC inhibitor belongs to hydroxamic acid derivatives that have been shown to inhibit both class I and II HDACs. Suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA), which chelate the zinc ions, fall into this group. In particular, SAHA, second generation HDAC inhibitor, is in several cancer clinical trials including solid tumors and hematological malignancy, advanced refractory leukemia, metastatic head and neck cancers, and advanced cancers. To our knowledge, selenium-containing HDAC inhibitors are not reported in the literature. In order to find novel HDAC inhibitors, two selenium based-compounds modeled after SAHA were synthesized. We have compared two selenium-containing compounds; namely, SelSA-1 and SelSA-2 for their inhibitory HDAC activities against SAHA. Both, SelSA-1 and SelSA-2 were potent HDAC inhibitors; SelSA-2 having IC50 values of 8.9 nM whereas SAHA showed HDAC IC50 values of 196 nM. These results provided novel selenium-containing potent HDAC inhibitors.  相似文献   
77.
The internal phylogeny of the arachnid order Opiliones is investigated by including molecular data from five molecular markers for ca. 140 species totalling 43 families of Opiliones. The phylogenetic analyses consisted of a direct optimization (DO) approach using POY v. 4 and sophisticated tree search algorithms as well as a static alignment analysed under maximum likelihood. The four Opiliones suborders were well‐supported clades, but subordinal relationships did not receive support in the DO analysis, with the exception of the monophyly of Palpatores (=Eupnoi + Dyspnoi). Maximum‐likelihood analysis strongly supported the traditional relationship of Phalangida and Palpatores: (Cyphophthalmi ((Eupnoi + Dyspnoi) Laniatores)). Relationships within each suborder are well resolved and largely congruent between direct optimization and maximum‐likelihood approaches. Age estimates for the main Opiliones lineages suggest a Carboniferous diversification of Cyphophthalmi, while its sister group, Phalangida, diversified in the Early Devonian. Diversification of all suborders predates the Triassic, and most major lineages predate the Cretaceous. The following taxonomic changes are proposed. Dyspnoi: Hesperonemastoma is transferred to Sabaconidae. Insidiatores: Sclerobunidae stat. nov. is erected as a family for Zuma acuta. © The Willi Hennig Society 2009.  相似文献   
78.
Hyperprolinemia type II (HPII) is an autosomal recessive disorder caused by the severe deficiency of enzyme 1-pyrroline-5-carboxylic acid dehydrogenase leading to tissue accumulation of proline. Chronic administration of Pro led to significant reduction of cytosolic ALT activity of olfactory lobes (50.57%), cerebrum (40%) and medulla oblongata (13.71%) only. Whereas mitochondrial ALT activity was reduced significantly in, all brain regions such as olfactory lobes (73.23%), cerebrum (70.26%), cerebellum (65.39%) and medulla oblongata (65.18%). The effect of chronic Pro administration on cytosolic AST activity was also determined. The cytosolic AST activity from olfactory lobes, cerebrum and medulla oblongata reduced by 75.71, 67.53 and 76.13%, respectively while cytosolic AST activity from cerebellum increased by 28.05%. The mitochondrial AST activity lowered in olfactory lobes (by 72.45%), cerebrum (by 78%), cerebellum (by 49.56%) and medulla oblongata (by 69.30%). In vitro studies also showed increase in brain tissue proline and decrease in glutamate levels. In vitro studies indicated that proline has direct inhibitory effect on these enzymes and glutamate levels in brain tissue showed positive correlation with AST and ALT activities. Acid phosphatase (ACP) activity reduced significantly in olfactory lobes (40.33%) and cerebrum (20.82%) whereas it elevated in cerebellum (97.32%) and medulla oblongata (76.33%). The histological studies showed degenerative changes in brain. Following proline treatment, the animals became sluggish and showed low responses to tail pricks and lifting by tails and showed impaired balancing. These observations indicate influence of proline on AST, ALT and ACP activities of different brain regions leading to lesser synthesis of glutamate thereby causing neurological dysfunctions.  相似文献   
79.
Reactive oxygen species modify DNA, generating various DNA lesions including modified bases such as 8-oxoguanine (8-oxoG). These base-modified DNA lesions have been shown to trap DNA topoisomerase I (TOP1) into covalent cleavage complexes. In this study, we have investigated the role of TOP1 in hydrogen peroxide toxicity. We showed that ectopic expression of TOP1 in Saccharomyces cerevisiae conferred sensitivity to hydrogen peroxide, and this sensitivity was dependent on RAD9 checkpoint function. Moreover, in the mammalian cell culture system, hydrogen peroxide-induced growth inhibition and apoptosis were shown to be partly TOP1-dependent as evidenced by a specific increase in resistance to hydrogen peroxide in TOP1-deficient P388/CPT45 murine leukemia cells as compared with their TOP1-proficient parental cell line P388. In addition, hydrogen peroxide was shown to induce TOP1-DNA cross-links. These results support a model in which hydrogen peroxide promotes the trapping of TOP1 on oxidative DNA lesions to form TOP1-DNA cleavage complexes that contribute to hydrogen peroxide toxicity.  相似文献   
80.
To better conceptualize the mechanism underlying the evolution of synonymous codons, we have analysed intragenic codon usage in chosen "regions" of some mouse and human genes. We divided a given gene into two regions: one consisting of a trinucleotide repeat (TNR) and the other consisting of the "rest of the coding region" (RCR). Usually, a TNR is composed of a repetitive single codon, which may reflect its frequency in a gene. In contrast, a non-random frequency of a codon in the RCR versus TNR (or vice versa) of a gene should indicate a bias for that codon within the TNR. We examined this scenario by comparing codon frequency between the RCR and the cognate TNR(s) for a set of human and mouse genes. A TNR length of six amino acids or more was used to identify genes from the Genbank database. Twenty nine human and twenty one mouse genes containing TNRs coding for nine different amino acid runs were identified. The ratio of codon frequency in a TNR versus the corresponding RCR was expressed as "fold change" which was also regarded as a measure of codon bias (defined as preferential use either in TNR or in RCR). Chi-square values were then determined from the distribution of codon frequency in a TNR vs. the cognate RCR. At p<0.001, 22% and 27%, respectively, of human and mouse TNRs showed codon bias. Greater than 40% of the TNRs (29 out of 69 in human, and 18 of 42 in mouse) showed codon bias at p<0.05. In addition, we identify eight single-codon TNRs in mouse and ten in human genes. Thus, our results show intragenic codon bias in both mouse and human genes expressed in diverse tissue types. Since our results are independent of the Codon Adaptation Index (CAI) and starvation CAI, and since the tRNA repertoire in a cell or in a tissue is constant, our data suggest that other constraints besides tRNA abundance played a role in creating intragenic codon bias in these genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号