首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2357篇
  免费   217篇
  国内免费   269篇
  2024年   5篇
  2023年   22篇
  2022年   64篇
  2021年   120篇
  2020年   88篇
  2019年   103篇
  2018年   99篇
  2017年   70篇
  2016年   95篇
  2015年   159篇
  2014年   154篇
  2013年   206篇
  2012年   232篇
  2011年   204篇
  2010年   141篇
  2009年   102篇
  2008年   139篇
  2007年   118篇
  2006年   108篇
  2005年   84篇
  2004年   79篇
  2003年   84篇
  2002年   53篇
  2001年   26篇
  2000年   25篇
  1999年   41篇
  1998年   27篇
  1997年   23篇
  1996年   12篇
  1995年   15篇
  1994年   11篇
  1993年   17篇
  1992年   12篇
  1991年   5篇
  1990年   10篇
  1989年   5篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1977年   4篇
  1975年   5篇
  1969年   3篇
  1968年   4篇
  1966年   4篇
  1965年   3篇
  1963年   4篇
  1961年   4篇
排序方式: 共有2843条查询结果,搜索用时 265 毫秒
231.
Streptococcus mutans UA159, the genome sequence reference strain, exhibits nonlantibiotic bacteriocin (mutacin) activity. In this study, we have combined bioinformatic and mutational analyses to identify the ABC transporter designated NlmTE, which is required for mutacin biogenesis in strain UA159 as well as in another mutacin producer, S. mutans N.  相似文献   
232.
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is most likely responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also polymerize actin, bundle F-actin filaments, and bind actin filaments to lipid bilayers through electrostatic interactions. MBP consists of a number of posttranslationally modified isoforms of varying charge, including C8, in which six arginines are deiminated to the uncharged residue citrulline. The deiminated form decreases with development, but is increased in patients with the demyelinating disease multiple sclerosis. Here we investigate the effect of decreased net positive charge of MBP on its interaction with actin in vitro by comparing a recombinant murine form, rmC1, of the most highly charged unmodified isoform, C1, and a recombinant analogue of C8 in which six basic residues are converted to glutamine, rmC8. The dissociation constant of the less charged isoform rmC8 for actin was a little greater than that of rmC1, and rmC8 had somewhat reduced ability to polymerize actin and bundle F-actin filaments than rmC1. Moreover, rmC8 was more readily dissociated from actin by Ca(2+)-calmodulin than rmC1, and the ability of the deiminated isoform to bind actin to lipid bilayers was reduced. These results indicate that electrostatic forces are the primary determinant of the interaction of MBP with actin. The spin labeled side chains of a series of rmC1 and rmC8 variants containing single Cys substitutions at seven sites throughout the sequence all became motionally restricted to a similar degree on binding F-actin, indicating that the entire sequence is involved in interacting with actin filaments or is otherwise structurally constrained in actin bundles. Thus, this posttranslational modification of MBP, which occurs early in life and is increased in multiple sclerosis, attenuates the ability of MBP to polymerize and bundle actin, and to bind it to a negatively charged membrane.  相似文献   
233.
Here, we describe the 1.6-A X-ray structure of the DDD (Dickerson-Drew dodecamer), which has been covalently modified by the tethering of four cationic charges. This modified version of the DDD, called here the DDD(4+), is composed of [d(CGCGAAXXCGCG)](2), where X is effectively a thymine residue linked at the 5 position to an n-propyl-amine. The structure was determined from crystals soaked with thallium(I), which has been broadly used as a mimic of K(+) in X-ray diffraction experiments aimed at determining positions of cations adjacent to nucleic acids. Three of the tethered cations are directed radially out from the DNA. The radially directed tethered cations do not appear to induce structural changes or to displace counterions. One of the tethered cations is directed in the 3' direction, toward a phosphate group near one end of the duplex. This tethered cation appears to interact electrostatically with the DNA. This interaction is accompanied by changes in helical parameters rise, roll, and twist and by a displacement of the backbone relative to a control oligonucleotide. In addition, these interactions appear to be associated with displacement of counterions from the major groove of the DNA.  相似文献   
234.
Hu007, a humanized IgG1 monoclonal antibody, binds and neutralizes human, cynomolgus, and rabbit IL-1beta but only weakly binds to mouse and rat IL-1beta. Biacore experiments demonstrated that Hu007 and the type-I IL-1 receptor competed for binding to IL-1beta. Increasing salt concentrations decrease the association rate with only moderate effects on the dissociation rate, suggesting that long-range electrostatics are critical for formation of the initial complex. To understand the ligand-binding specificity of Hu007, we have mapped the critical residues involved in the recognition of IL-1beta. Selected residues in cynomolgus IL-1beta were mutated to the corresponding residues in mouse IL-1beta, and the effects of the changes on binding were evaluated by surface plasmon resonance measurements using Biacore. Specifically, substitution of F150S decreased binding affinity by 100-fold, suggesting the importance of hydrophobic interactions in stabilizing the antibody/antigen complex. Substitution of three amino acids near the N- and C-terminal regions of cIL-1beta with those found in mouse IL-1beta (V3I/S5Q/F150S) decreased the binding affinity of Hu007 to IL-1beta by about 1000-fold. Conversely, mutating the corresponding residues in mouse IL-1beta to the human sequence resulted in an increase in binding affinity of about 1000-fold. Hydrogen-deuterium exchange/mass spectrometry analysis confirmed that these regions of IL-1beta were protected from exchange because of antibody binding. The results from this study demonstrate that Hu007 binds to a region located in the open end of the beta-barrel structure of IL-1beta and blocks binding of IL-1beta to its receptor.  相似文献   
235.
We describe genomic structures of 59 X-chromosome segmental duplications that include the proteolipid protein 1 gene (PLP1) in patients with Pelizaeus-Merzbacher disease. We provide the first report of 13 junction sequences, which gives insight into underlying mechanisms. Although proximal breakpoints were highly variable, distal breakpoints tended to cluster around low-copy repeats (LCRs) (50% of distal breakpoints), and each duplication event appeared to be unique (100 kb to 4.6 Mb in size). Sequence analysis of the junctions revealed no large homologous regions between proximal and distal breakpoints. Most junctions had microhomology of 1-6 bases, and one had a 2-base insertion. Boundaries between single-copy and duplicated DNA were identical to the reference genomic sequence in all patients investigated. Taken together, these data suggest that the tandem duplications are formed by a coupled homologous and nonhomologous recombination mechanism. We suggest repair of a double-stranded break (DSB) by one-sided homologous strand invasion of a sister chromatid, followed by DNA synthesis and nonhomologous end joining with the other end of the break. This is in contrast to other genomic disorders that have recurrent rearrangements formed by nonallelic homologous recombination between LCRs. Interspersed repetitive elements (Alu elements, long interspersed nuclear elements, and long terminal repeats) were found at 18 of the 26 breakpoint sequences studied. No specific motif that may predispose to DSBs was revealed, but single or alternating tracts of purines and pyrimidines that may cause secondary structures were common. Analysis of the 2-Mb region susceptible to duplications identified proximal-specific repeats and distal LCRs in addition to the previously reported ones, suggesting that the unique genomic architecture may have a role in nonrecurrent rearrangements by promoting instability.  相似文献   
236.
Sizing DNA using a nanometer-diameter pore   总被引:1,自引:0,他引:1       下载免费PDF全文
Each species from bacteria to human has a distinct genetic fingerprint. Therefore, a mechanism that detects a single molecule of DNA represents the ultimate analytical tool. As a first step in the development of such a tool, we have explored using a nanometer-diameter pore, sputtered in a nanometer-thick inorganic membrane with a tightly focused electron beam, as a transducer that detects single molecules of DNA and produces an electrical signature of the structure. When an electric field is applied across the membrane, a DNA molecule immersed in electrolyte is attracted to the pore, blocks the current through it, and eventually translocates across the membrane as verified unequivocally by gel electrophoresis. The relationship between DNA translocation and blocking current has been established through molecular dynamics simulations. By measuring the duration and magnitude of the blocking current transient, we can discriminate single-stranded from double-stranded DNA and resolve the length of the polymer.  相似文献   
237.
Transferable antibiotic resistance in Haemophilus influenzae was first detected in the early 1970s. After this, resistance spread rapidly worldwide and was shown to be transferred by a large 40- to 60-kb conjugative element. Bioinformatics analysis of the complete sequence of a typical H. influenzae conjugative resistance element, ICEHin1056, revealed the shared evolutionary origin of this element. ICEHin1056 has homology to 20 contiguous sequences in the National Center for Biotechnology Information database. Systematic comparison of these homologous sequences resulted in identification of a conserved syntenic genomic island consisting of up to 33 core genes in 16 beta- and gamma-Proteobacteria. These diverse genomic islands shared a common evolutionary origin, insert into tRNA genes, and have diverged widely, with G+C contents ranging from 40 to 70% and amino acid homologies as low as 20 to 25% for shared core genes. These core genes are likely to account for the conjugative transfer of the genomic islands and may even encode autonomous replication. Accessory gene clusters were nestled among the core genes and encode the following diverse major attributes: antibiotic, metal, and antiseptic resistance; degradation of chemicals; type IV secretion systems; two-component signaling systems; Vi antigen capsule synthesis; toxin production; and a wide range of metabolic functions. These related genomic islands include the following well-characterized structures: SPI-7, found in Salmonella enterica serovar Typhi; PAP1 or pKLC102, found in Pseudomonas aeruginosa; and the clc element, found in Pseudomonas sp. strain B13. This is the first report of a diverse family of related syntenic genomic islands with a deep evolutionary origin, and our findings challenge the view that genomic islands consist only of independently evolving modules.  相似文献   
238.
The bacterial pathogen Neisseria meningitidis expresses long, thin, retractile fibers (called type IV pili) from its cell surface and uses these adhesive structures to mediate primary attachment to epithelial cells during host colonization and invasion. PilQ is an outer membrane protein complex that is essential for the translocation of these pili across the outer membrane. Here, we present the structure of the PilQ complex determined by cryoelectron microscopy to 12 A resolution. The dominant feature of the structure is a large central cavity, formed by four arm features that spiral upwards from a squared ring base and meet to form a prominent cap region. The cavity, running through the center of the complex, is continuous and is effectively sealed at both the top and bottom. Analysis of the complex using self-orientation and by examination of two-dimensional crystals indicates a strong C4 rotational symmetry, with a much weaker C12 rotational symmetry, consistent with PilQ possessing true C4 symmetry with C12 quasi-symmetry. We therefore suggest that the complex is a homododecamer, formed by association of 12 PilQ polypeptide chains into a tetramer of trimers. The structure of the PilQ complex, with its large and well defined central chamber, suggests that it may not function solely as a passive portal in the outer membrane, but could be actively involved in mediating pilus assembly or modification.  相似文献   
239.
Defects in the intestinal immune system may contribute to the pathogenesis of autoimmune diseases. Intraepithelial lymphocytes represent a substantial fraction of gut-associated lymphocytes, but their function in mucosal immunity is unclear. A newly described population of NK cells that spontaneously secrete IL-4 and IFN-gamma is present in the intraepithelial lymphocyte compartment of the rat. We hypothesized that defects in the number or function of these cells would be present in rats susceptible to autoimmunity. We report that the number of NKR-P1A(+)CD3(-) intraepithelial NK (IENK) cells is deficient before onset of spontaneous autoimmune diabetes in diabetes-prone BB (BBDP) rats. The absolute number of recoverable IENK cells was only approximately 8% of that observed in WF rats. Bone marrow transplantation from histocompatible WF donors reversed the IENK cell deficiency (and prevented diabetes) in these animals, suggesting a hemopoietic origin for their IENK cell defect. Analysis of diabetes-resistant BB rats, which develop autoimmune diabetes only after perturbation of the immune system, revealed IENK cell numbers intermediate between that of BBDP and WF rats. IENK cells were selectively depleted during treatment to induce diabetes. Prediabetic BBDP and diabetes-resistant BB animals also exhibited defective IENK cell function, including decreased NK cell cytotoxicity and reduced secretion of IL-4 and IFN-gamma. IENK functional defects were also observed in LEW and BN rats, which are susceptible to induced autoimmunity, but not in WF, DA, or F344 rats, which are resistant. Defects in IENK cell number and function may contribute to the pathogenesis of autoimmune diseases including type 1 diabetes.  相似文献   
240.
Summary A major challenge in the widespread application of human embryonic stem (hES) cells in clinical therapy and basic scientific research is the development of efficient cryopreservation protocols. Conventional slow-cooling protocols utilizing standard cryoprotectant concentrations i.e. 10% (v/v) DMSO, yield extremely low survival rates of <5% as reported by previous studies. This study characterized cell death within frozen–thawed hES colonies that were cryopreserved under standard conditions. Surprisingly, our results showed that immediately after post-thaw washing, the overwhelming majority of hES cells were viable (≈98%), as assessed by the trypan blue exclusion test. However, when the freshly-thawed hES colonies were incubated within a 37 °C incubator, there was observed to be a gradual reduction in cell viability over time. The kinetics of cell death was drastically slowed-down by keeping the freshly-thawed hES colonies at 4 °C, with >90% of cells remaining viable after 90 min of incubation at 4 °C. This effect was reversible upon re-exposing the cells to physiological temperature. The vast majority of low temperature-exposed hES colonies gradually underwent cell death upon incubation for a further 90 min at 37 °C. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end-labeling (TUNEL) assay confirmed apoptosis-induced nuclear DNA fragmentation in frozen–thawed hES cells after incubation at 37 °C for 90 min. Expression of active caspase-3 enzyme, which is another prominent marker of apoptosis, was confirmed by immunocytochemical staining, while transmission electron microscopy showed typical ultrastructural features of apoptosis such as chromatin condensation and margination to the nuclear membrane. Hence, our results demonstrated that apoptosis instead of cellular necrosis, is the major mechanism of the loss of viability of cryopreserved hES cells during freeze–thawing with conventional slow-cooling protocols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号