首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3949篇
  免费   341篇
  国内免费   1篇
  4291篇
  2023年   17篇
  2022年   42篇
  2021年   75篇
  2020年   54篇
  2019年   55篇
  2018年   52篇
  2017年   46篇
  2016年   100篇
  2015年   152篇
  2014年   188篇
  2013年   216篇
  2012年   325篇
  2011年   317篇
  2010年   191篇
  2009年   199篇
  2008年   255篇
  2007年   211篇
  2006年   197篇
  2005年   222篇
  2004年   217篇
  2003年   195篇
  2002年   187篇
  2001年   25篇
  2000年   29篇
  1999年   31篇
  1998年   39篇
  1997年   27篇
  1996年   29篇
  1995年   30篇
  1994年   40篇
  1993年   24篇
  1992年   22篇
  1991年   15篇
  1990年   13篇
  1989年   23篇
  1988年   19篇
  1987年   19篇
  1985年   19篇
  1984年   36篇
  1983年   27篇
  1982年   23篇
  1981年   16篇
  1980年   32篇
  1979年   15篇
  1978年   29篇
  1977年   27篇
  1976年   19篇
  1975年   17篇
  1974年   26篇
  1973年   18篇
排序方式: 共有4291条查询结果,搜索用时 15 毫秒
181.
Primary fatty acid amides (R-CO-NH2) and N-acylglycines (R-CO-NH-CH2-COOH) are classes of compounds that have only recently been isolated and characterized from biological sources. Key questions remain regarding how these lipid amides are produced and degraded in biological systems. Relative to the fatty acids, little has been done to develop methods to separate and quantify the fatty acid amides and N-acylglycines. We describe reversed phase HPLC methods for the separation of C2-C12 primary fatty acid amides and N-acylglycines and also C12-C22 fatty acid amides. Separation within each class occurs primarily on the basis of simple interactions between the acyl chain and the chromatographic stationary phase, but the polar headgroups on these and related fatty acids and N-acylethanolamides modulate the absolute retention in reversed phase mode. We use these methods to measure the enzyme-mediated, two-step conversion of N-octanoylglycine to octanoamide.  相似文献   
182.
183.
Three mutant mice with pigmentation phenotypes were recovered from a genomewide random mouse chemical mutagenesis study. White toes (Whto; MGI:1861986), Belly spot and white toes (Bswt; MGI:2152776) and Dark footpads 2 (Dfp2; MGI:1861991) were identified following visual inspection of progeny from a male exposed to the point mutagen ethylnitrosourea (ENU). In order to rapidly localize the causative mutations, genome-wide linkage scans were performed on pooled DNA samples from backcross animals for each mutant line. Whto was mapped to proximal mouse chromosome (Mmu) 7 between Cen (the centromere) and D7Mit112 (8.0 cM from the centromere), Bswt was mapped to centric Mmul between D1Mit214 (32.1 cM) and D1Mit480 (32.8 cM) and Dfp2 was mapped to proximalMmu4 between Cen and D4Mit18 (5.2 cM). Whto, Bswt and Dfp2 may provide novel starting points in furthering the elucidation of genetic and biochemical pathways relevant to pigmentation and associated biological processes.  相似文献   
184.
Cell polarization and migration in response to chemokines is essential for proper development of the immune system and activation of immune responses. Recent studies of chemokine signaling have revealed a critical role for PI3-Kinase, which is required for polarized membrane association of pleckstrin homology (PH) domain-containing proteins and activation of Rho family GTPases that are essential for cell polarization and actin reorganization. Additional data argue that tyrosine kinases are also important for chemokine-induced Rac activation. However, how and which kinases participate in these pathways remain unclear. We demonstrate here that the Tec kinases Itk and Rlk play an important role in chemokine signaling in T lymphocytes. Chemokine stimulation induced transient membrane association of Itk and phosphorylation of both Itk and Rlk, and purified T cells from Rlk(-/-)Itk(-/-) mice exhibited defective migration to multiple chemokines in vitro and decreased homing to lymph nodes upon transfer to wt mice. Expression of a dominant-negative Itk impaired SDF-1alpha-induced migration, cell polarization, and activation of Rac and Cdc42. Thus, Tec kinases are critical components of signaling pathways required for actin polarization downstream from both antigen and chemokine receptors in T cells.  相似文献   
185.
B-type natriuretic peptide (BNP) has been reported to be released from the myocardium during ischemia. We hypothesized that BNP mediates cardioprotection during ischemia-reperfusion and examined whether exogenous BNP limits myocardial infarction and the potential role of ATP-sensitive potassium (K(ATP)) channel opening. Langendorff-perfused rat hearts underwent 35 min of left coronary artery occlusion and 120 min of reperfusion. The control infarct-to-risk ratio was 44.8 +/- 4.4% (means +/- SE). BNP perfused 10 min before ischemia limited infarct size in a concentration-dependent manner, with maximal protection observed at 10(-8) M (infarct-to-risk ratio: 20.1 +/- 5.2%, P < 0.01 vs. control), associated with a 2.5-fold elevation of myocardial cGMP above the control value. To examine the role of K(ATP) channel opening, glibenclamide (10(-6) M), 5-hydroxydecanoate (5-HD; 10(-4) M), or HMR-1098 (10(-5) M) was coperfused with BNP (10(-8) M). Protection afforded by BNP was abolished by glibenclamide or 5-HD but not by HMR-1098, suggesting the involvement of putative mitochondrial but not sarcolemmal K(ATP) channel opening. We conclude that natriuretic peptide/cGMP/K(ATP) channel signaling may constitute an important injury-limiting mechanism in myocardium.  相似文献   
186.
Modifications to the cell wall of developing and ripening tomato fruit are mediated by cell wall-degrading enzymes, including a beta-d-xylosidase or alpha-l-arabinofuranosidase, which participate in the breakdown of xylans and/or arabinoxylans. The activity of both enzymes was highest during early fruit growth, before decreasing during later development and ripening. Two beta-d-xylosidase cDNAs, designated LeXYL1 and LeXYL2, and an alpha-l-arabinofuranosidase cDNA, designated LeARF1, were obtained. Accumulation of mRNAs for beta-d-xylosidase and alpha-l-arabinofuranosidase was examined during fruit development and ripening. LeARF1 and LeXYL2 genes were relatively highly expressed during fruit development and decreased after the onset of ripening. By contrast, LeXYL1 was not expressed during fruit development, but was expressed later, particularly during over-ripening. The expression of all three genes was also followed in ripening-impaired mutants, Nr, Nr2, nor, and rin of cv. Ailsa Craig fruit. LeXYL2 mRNA was detected in the ripe fruits of all the mutants and its abundance was similar to that in mature green wild-type fruit. By contrast, LEXYL1 mRNA was expressed only in the ripe fruits of the Nr mutant, suggesting that the two beta-d-xylosidase genes are subject to distinct regulatory control during fruit development and ripening. LeARF1 mRNA was detected in ripe fruits of Nr2, nor and rin, and not in ripe fruit of the Nr mutant. The accumulation of LeARF1 in ripe fruit was restored by 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, while 1-MCP had no effect on the expression of LeXYL1 or LeXYL2. This suggests that LeARF1 expression is subject to negative regulation by ethylene and that the two beta-d-xylosidase genes are independent of ethylene action.  相似文献   
187.
188.
Food effects on the absorption and pharmacokinetics of cocoa flavanols   总被引:1,自引:0,他引:1  
Macronutrients in food and gastric acid are known to have a pronounced effect on the metabolism of many xenobiotics, an effect that impacts their efficacy as bioactive agents. In this investigation we assessed the impact of select food treatments and the histamine H(2)-receptor antagonist Famotidine (Pepcid-AC) on flavanol absorption and metabolism. Four crossover intervention studies were conducted with 6 subjects each. Volunteers consumed sugar-free, flavanol-rich cocoa (0.125 g/kg body wt) alone, with macronutrient-rich foods (8.75 or 17.5 kJ/kg subject body wt) or Famotidine (Pepcid-AC). Blood samples were drawn at 5 time points including baseline. Plasma samples were analyzed for epicatechin and catechin flavanols by HPLC. Pharmacokinetic parameters were assessed using non-compartmental methodology. When provided at 17.5 kJ/kg subject body weight (approximately 4 kcal/kg), sugar and bread test meals increased flavanol area under the curve (AUC) values to 140% of control values (P < 0.05). A corresponding tendency for plasma antioxidant capacity to increase was observed for the cocoa treatment at 1.5 and 2.5 h (P < 0.17, P < 0.06, respectively). The ability of treatment meals to affect AUC values was positively correlated with treatment carbohydrate content (r = 0.83; P< 0.02). In contrast to carbohydrate rich meals, lipid and protein rich meals and Famotidine treatment had minimal effects on flavanol absorption. Based on C(max) and AUC values, this data suggests that the uptake of flavanols can be increased significantly by concurrent carbohydrate consumption.  相似文献   
189.
Ramakrishnan M  Jensen PH  Marsh D 《Biochemistry》2003,42(44):12919-12926
Alpha-synuclein is a small presynaptic protein, which is linked to the development of Parkinson's disease. Alpha-synuclein partitions between cytosolic and vesicle-bound states, where membrane binding is accompanied by the formation of an amphipathic helix in the N-terminal section of the otherwise unstructured protein. The impact on alpha-synuclein of binding to vesicle-like liposomes has been studied extensively, but far less is known about the impact of alpha-synuclein on the membrane. The interactions of alpha-synuclein with phosphatidylglycerol membranes are studied here by using spin-labeled lipid species and electron spin resonance (ESR) spectroscopy to allow a detailed analysis of the effect on the membrane lipids. Membrane association of alpha-synuclein perturbs the ESR spectra of spin-labeled lipids in bilayers of phosphatidylglycerol but not of phosphatidylcholine. The interaction is inhibited at high ionic strength. The segmental motion is hindered at all positions of spin labeling in the phosphatidylglycerol sn-2 chain, while still preserving the chain flexibility gradient characteristic of fluid phospholipid membranes. Direct motional restriction of the lipid chains, resulting from penetration of the protein into the hydrophobic interior of the membrane, is not observed. Saturation occurs at a protein/lipid ratio corresponding to approximately 36 lipids/protein added. Alpha-synuclein exhibits a selectivity of interaction with different phospholipid spin labels when bound to phosphatidylglycerol membranes in the following order: stearic acid > cardiolipin > phosphatidylcholine > phosphatidylglycerol approximately phosphatidylethanolamine > phosphatidic acid approximately phosphatidylserine > N-acyl phosphatidylethanolamine > diglyceride. Accordingly, membrane-bound alpha-synuclein associates at the interfacial region of the bilayer where it may favor a local concentration of certain phospholipids.  相似文献   
190.
Cytochrome f and plastocyanin from the cyanobacterium Phormidium laminosum react an order of magnitude faster than their counterparts from chloroplasts when long-range electrostatic interactions have been screened out by high salt concentration [Schlarb-Ridley, B. G., et al. (2002) Biochemistry 41, 3279-3285]. To investigate the relative contributions of the reaction partners to these differences, the reactions of turnip cytochrome f with P. laminosum plastocyanin and P. laminosum cytochrome f with pea plastocyanin were examined. Exchanging one of the plant reaction partners with the corresponding cyanobacterial protein nearly abolished electron transfer at low ionic strength but increased the rate at high ionic strength. This increase was larger for P. laminosum cytochrome f than for P. laminosumplastocyanin. To identify molecular features of P. laminosum cytochrome f that contribute to the increase, the effect of mutations in the N-terminal heme-shielding peptide on the reaction with P. laminosum plastocyanin was determined. Phenylalanine-3 was converted to valine and tryptophan-4 to phenylalanine or leucine. The mutations lowered the rate constant at 0.1 M ionic strength by factors of 0.71 for F4V, 0.42 for W4F, and 0.63 for W4L while introducing little change in the shape of the ionic strength dependence curve. When the N-terminal tetrapeptide (sequence YPFW) was converted into that found in the chloroplast of Chlamydomonas reinhardtii (YPVF), the reaction was slowed further (factor of 0.26). The N-terminal heme-shielding peptide was found to be responsible for 75% of the kinetic differences between cytochrome f from chloroplasts and the cyanobacterium when electrostatic interactions were eliminated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号