首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3940篇
  免费   341篇
  国内免费   1篇
  2023年   14篇
  2022年   37篇
  2021年   75篇
  2020年   54篇
  2019年   55篇
  2018年   52篇
  2017年   46篇
  2016年   100篇
  2015年   152篇
  2014年   188篇
  2013年   216篇
  2012年   325篇
  2011年   317篇
  2010年   191篇
  2009年   199篇
  2008年   255篇
  2007年   211篇
  2006年   197篇
  2005年   222篇
  2004年   217篇
  2003年   195篇
  2002年   187篇
  2001年   25篇
  2000年   29篇
  1999年   31篇
  1998年   39篇
  1997年   27篇
  1996年   29篇
  1995年   30篇
  1994年   40篇
  1993年   24篇
  1992年   22篇
  1991年   15篇
  1990年   13篇
  1989年   23篇
  1988年   19篇
  1987年   19篇
  1985年   19篇
  1984年   36篇
  1983年   27篇
  1982年   23篇
  1981年   16篇
  1980年   32篇
  1979年   15篇
  1978年   29篇
  1977年   27篇
  1976年   19篇
  1975年   17篇
  1974年   26篇
  1973年   18篇
排序方式: 共有4282条查询结果,搜索用时 31 毫秒
161.
162.
163.
The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.  相似文献   
164.
The low-affinity receptor for IgG, FcgammaRIIb, negatively regulates B cell antigen receptor (BCR)-mediated proliferative signalling. FcgammaRIIb has been reported to mediate this inhibition by uncoupling the BCR from the RasMAPkinase pathway. We now show that FcgammaRIIb-mediated negative feedback inhibition also correlates with induction of an Erk-associated phosphatase activity that reflects the rapid association of Erk and the MAPkinase phosphatase, Pac-1, and dephosphorylation and inactivation of ErkMAPkinase. This mechanism of abrogating ongoing ErkMAPkinase signalling therefore provides a rationale for rapid immune-complex-mediated feedback inhibition of active antigen-driven B cell responses. In addition, FcgammaRIIb signalling also induces the recruitment and activation of the 3'-inositol phosphatase, PTEN, which by antagonising PI 3kinase activity and inhibiting BCR-coupling to the anti-apoptotic kinase, Akt, provides an additional mechanism for FcgammaRIIb-mediated negative regulation of BCR-coupling to ErkMAPkinase, cell survival and proliferation.  相似文献   
165.
Folate, homocysteine, endothelial function and cardiovascular disease   总被引:22,自引:0,他引:22  
Evidence reported from numerous clinical studies over the past decade has revealed an association between increased plasma total homocysteine (tHcy) concentrations and cardiovascular disease (CVD). In addition, epidemiological studies have identified an inverse association between blood folate concentrations, folate intake and cardiovascular endpoints, that are independent of homocysteine. Folic acid supplementation can lower plasma tHcy concentrations safely and inexpensively. Furthermore, folic acid can reverse endothelial dysfunction observed in patients with CVD. This reversal in endothelial dysfunction with folic acid has been shown to be independent of plasma tHcy lowering, suggesting that folate has pleiotropic effects on the vasculature other than homocysteine lowering. In vitro evidence demonstrates that 5-methyltetrahydrofolate (5MeTHF) the main circulating metabolite of folate, can increase nitric oxide production and can directly scavenge superoxide radicals. The potential beneficial role of folic acid supplements on vascular disease are currently being tested in randomized placebo controlled studies.  相似文献   
166.
Mitochondrial permeability transition (mPT) is a crucial event in the progression to cell death in the setting of ischemia-reperfusion. We have used a model system in which mPT can be reliably and reproducibly induced to test the hypothesis that the profound protection associated with the phenomenon of myocardial preconditioning is mediated by suppression of the mPT. Adult rat myocytes were loaded with the fluorescent probe tetramethylrhodamine methyl ester, which generates oxidative stress on laser illumination, thus inducing the mPT (indicated by collapse of the mitochondrial membrane potential) and ATP depletion, seen as rigor contracture. The known inhibitors of the mPT, cyclosporin A (0.2 microM) and N-methyl-4-valine-cyclosporin A (0.4 microM), increased the time taken to induce the mPT by 1.8- and 2.9-fold, respectively, compared with control (P < 0.001) and rigor contracture by 1.5-fold compared with control (P < 0.001). Hypoxic preconditioning (HP) and pharmacological preconditioning, using diazoxide (30 microM) or nicorandil (100 microM), also increased the time taken to induce the mPT by 2.0-, 2.1-, and 1.5-fold, respectively (P < 0.001), and rigor contracture by 1.9-, 1.7-, and 1.5-fold, respectively, compared with control (P < 0.001). Effects of HP, diazoxide, and nicorandil were abolished in the presence of mitochondrial ATP-sensitive K(+) (K(ATP)) channel blockers glibenclamide (10 microM) and 5-hydroxydecanoate (100 microM) but were maintained in the presence of the sarcolemmal K(ATP) channel blocker HMR-1098 (10 microM). In conclusion, preconditioning protects the myocardium by reducing the probability of the mPT, which normally occurs during ischemia-reperfusion in response to oxidative stress.  相似文献   
167.
Growth of Saccharomyces cerevisiae and fermentative ethanol production in the presence of acetic and lactic acids was measured in whole corn mash. In this industrial medium, as compared to glucose minimal medium, the yeast had increased tolerance to organic acid stress. It was concluded that the increased buffering capacity of whole corn mash, resulting in decreased concentration of undissociated acid, was responsible for this phenomenon.  相似文献   
168.
169.
Filamentous microbial mats from three aphotic sulfidic springs in Lower Kane Cave, Wyoming, were assessed with regard to bacterial diversity, community structure, and ecosystem function using a 16S rDNA-based phylogenetic approach combined with elemental content and stable carbon isotope ratio analyses. The most prevalent mat morphotype consisted of white filament bundles, with low C:N ratios (3.5-5.4) and high sulfur content (16.1-51.2%). White filament bundles and two other mat morphotypes had organic carbon isotope values (mean delta13C=-34.7 per thousand, 1sigma=3.6) consistent with chemolithoautotrophic carbon fixation from a dissolved inorganic carbon reservoir (cave water, mean delta13C=-7.4 per thousand for two springs, n=8). Bacterial diversity was low overall in the clone libraries, and the most abundant taxonomic group was affiliated with the "Epsilonproteobacteria" (68%), with other bacterial sequences affiliated with Gammaproteobacteria (12.2%), Betaproteobacteria (11.7%), Deltaproteobacteria (0.8%), and the Acidobacterium (5.6%) and Bacteriodetes/Chlorobi (1.7%) divisions. Six distinct epsilonproteobacterial taxonomic groups were identified from the microbial mats. Epsilonproteobacterial and bacterial group abundances and community structure shifted from the spring orifices downstream, corresponding to changes in dissolved sulfide and oxygen concentrations and metabolic requirements of certain bacterial groups. Most of the clone sequences for epsilonproteobacterial groups were retrieved from areas with high sulfide and low oxygen concentrations, whereas Thiothrix spp. and Thiobacillus spp. had higher retrieved clone abundances where conditions of low sulfide and high oxygen concentrations were measured. Genetic and metabolic diversity among the "Epsilonproteobacteria" maximizes overall cave ecosystem function, and these organisms play a significant role in providing chemolithoautotrophic energy to the otherwise nutrient-poor cave habitat. Our results demonstrate that sulfur cycling supports subsurface ecosystems through chemolithoautotrophy and expand the evolutionary and ecological views of "Epsilonproteobacteria" in terrestrial habitats.  相似文献   
170.
A characteristic of many enteropathies is increased epithelial permeability, a potentially pathophysiological event that can be evoked by T helper (Th)-1 (i.e., IFN-gamma) and Th2 (i.e., IL-4) cytokines and bacterial infection [e.g., enteropathogenic Escherichia coli (EPEC)]. The green tea polyphenol (-)-epigallocatechin gallate (EGCG) has immunosuppressive properties, and we hypothesized that it would ameliorate the increased epithelial permeability induced by IFN-gamma, IL-4, and/or EPEC. EGCG, but not the related epigallocatechin, completely prevented the increase in epithelial (i.e., T84 cell monolayer) permeability caused by IFN-gamma exposure as gauged by transepithelial resistance and horseradish peroxidase flux; EGCG did not alleviate the barrier disruption induced by IL-4 or EPEC. IFN-gamma-treated T84 and THP-1 (monocytic cell line) cells displayed STAT1 activation (tyrosine phosphorylation on Western blot analysis, DNA binding on EMSA) and upregulation of interferon response factor-1 mRNA, a STAT1-dependent gene. All three events were inhibited by EGCG pretreatment. Aurintricarboxylic acid also blocked IFN-gamma-induced STAT1 activation, but it did not prevent the increase in epithelial permeability. Additionally, pharmacological blockade of MAPK signaling did not affect IFN-gamma-induced epithelial barrier dysfunction. Thus, as a potential adjunct anti-inflammatory agent, EGCG can block STAT1-dependent events in gut epithelia and monocytes and prevent IFN-gamma-induced increased epithelial permeability. The latter event is both a STAT1- and MAPK-independent event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号