首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6958篇
  免费   624篇
  国内免费   85篇
  2022年   87篇
  2021年   141篇
  2020年   103篇
  2019年   108篇
  2018年   87篇
  2017年   93篇
  2016年   150篇
  2015年   272篇
  2014年   332篇
  2013年   365篇
  2012年   538篇
  2011年   513篇
  2010年   309篇
  2009年   297篇
  2008年   390篇
  2007年   368篇
  2006年   321篇
  2005年   347篇
  2004年   314篇
  2003年   265篇
  2002年   260篇
  2001年   106篇
  2000年   108篇
  1999年   89篇
  1998年   83篇
  1997年   51篇
  1996年   49篇
  1995年   54篇
  1994年   71篇
  1993年   50篇
  1992年   60篇
  1991年   58篇
  1990年   68篇
  1989年   77篇
  1988年   60篇
  1987年   77篇
  1986年   52篇
  1985年   48篇
  1984年   73篇
  1983年   40篇
  1982年   47篇
  1981年   33篇
  1980年   44篇
  1979年   42篇
  1978年   48篇
  1977年   47篇
  1976年   45篇
  1975年   31篇
  1974年   43篇
  1973年   33篇
排序方式: 共有7667条查询结果,搜索用时 31 毫秒
101.
The nocR gene of Agrobacterium tumefaciens Ti plasmid pTiT37 is the regulatory gene of the nopaline catabolism (noc) operon of pTiT37. We have cloned and sequenced nocR, which encodes a DNA-binding protein. The deduced amino acid sequence is similar to those of members of the LysR family of prokaryotic activator proteins. Gel retardation experiments demonstrated that the NocR protein binds to the nocR promoter in both the presence and absence of nopaline. The increased mobility of the complex and alterations in the DNase I footprints revealed a nopaline-induced conformational change in the NocR-DNA complex. Sequence analysis of the NocR binding site indicated the presence immediately downstream of the –10 sequence of the nocR promoter of a 12 by putative operator overlapping a consensus gyrase recognition sequence and an 18 by long alternating purine-pyrimidine sequence. These results suggest that nopaline-induced alterations in the NocR protein-nocR promoter complex might control gene expression in the noc operon.  相似文献   
102.
Similarly to higher plant root systems, Chlamydomonas reinhardtii Dangeard (UTEX 90) cells exhibited biphasic NO3? uptake kinetics. The uptake pattern was similar in cells cultured in 10 mM NO3? (NO3?-grown), 0.25 mM NO3? (N-limited) or 10 mM NO3? followed by an 18-h period of N-deprivation (N-starved). In all cell types there was an apparent phase transition in uptake at 1.1 mM NO3?, although there were variations in the uptake Vmax of both isotherms. The rate of uptake via isotherm 0 ([NO3?]<1.1 mM) in N-limited cells was higher than that of either NO3?-grown or N-starved cells. In contrast, NO3?-grown and N-limited cells exhibited comparable Vmax values when supplied with 1.1 to 1.8 mM NO3? (isotherm 1). When supplied with 1.6 mM NO3?, both N-limited and N-starved cells exhibited enhanced linear uptake after 60 min of incubation. We ascribed this to an induction phenomenon. This trend was not observed when NO3?-grown cells were supplied with 1.6 mM NO3?, or when N-limited and N-starved cells were supplied with 0.6 mM NO3?. The ‘inducible’ aspect of uptake by N-limited cells was blocked by cycloheximide (10 mg l?1), but not by actinomycin D (5 mg l?1), thus indicating the involvement of a translational or post-translational event. To investigate this phenomenon further, we analysed the cell proteins of N-limited cells supplied with either 0.6 or 1.6 mM NO3? for 90 min, using two-dimensional gel electrophoresis. Comparison of protein profiles enabled the identification of a single cell membrane-associated polypeptide (21 kDa, pI ca 5.5) and ten soluble fraction polypeptides (17–73 kDa, pI ca 5.0 to 7.1) unique to the high NO3? treatment. We propose that the ‘inducible’ portion of NO3? uptake may provide the means by which C. reinhardtii cells regulate uptake in accordance with assimilatory capacity.  相似文献   
103.
104.
In the primordial thoracic ganglia of locust embryos, the bromodeoxiuridine (BrdU) technique for labelling proliferating cells and their progeny was combined with intracellular dye injection to investigate the origin and the clonal relationship of common inhibitory motoneurons. Common inhibitors 1 (CI1) and 3 (CI3) were found to be siblings, that is, they are produced by the division of one ganglion mother cell. This ganglion mother cell results from the first division of neuroblast 5–5, at about 30% of embryonic development. A large portion, at least, of the ganglion mother cells produced by subsequent divisions of neuroblast 5–5 give rise to interneurons with contralaterally ascending or descending axons and GABA-like immunoreactivity. Thus, CI1 and CI3 are more closely related to putative inhibitory interneurons than they are to other, that is, excitatory, motoneurons. Consistent with this, the CI somata are associated with cell bodies of putative inhibitory interneurons rather than with clusters of excitatory motoneuron somata. These results elicit speculations regarding the evolutionary origin of inhibitory motoneurons. 1994 John Wiley & Sons, Inc.  相似文献   
105.
The ability of the marine microorganism Desulfuromonas acetoxidans to reduce Fe(III) was investigated because of its close phylogenetic relationship with the freshwater dissimilatory Fe(III) reducer Geobacter metallireducens. Washed cell suspensions of the type strain of D. acetoxidans reduced soluble Fe(III)-citrate and Fe(III) complexed with nitriloacetic acid. The c-type cytochrome(s) of D. acetoxidans was oxidized by Fe(III)-citrate and Mn(IV)-oxalate, as well as by two electron acceptors known to support growth, colloidal sulfur and malate. D. acetoxidans grew in defined anoxic, bicarbonate-buffered medium with acetate as the sole electron donor and poorly crystalline Fe(III) or Mn(IV) as the sole electron acceptor. Magnetite (Fe3O4) and siderite (FeCO3) were the major end products of Fe(III) reduction, whereas rhodochrosite (MnCO3) was the end product of Mn(IV) reduction. Ethanol, propanol, pyruvate, and butanol also served as electron donors for Fe(III) reduction. In contrast to D. acetoxidans, G. metallireducens could only grow in freshwater medium and it did not conserve energy to support growth from colloidal S0 reduction. D. acetoxidans is the first marine microorganism shown to conserve energy to support growth by coupling the complete oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). Thus, D. acetoxidans provides a model enzymatic mechanism for Fe(III) or Mn(IV) oxidation of organic compounds in marine and estuarine sediments. These findings demonstrate that 16S rRNA phylogenetic analyses can suggest previously unrecognized metabolic capabilities of microorganisms.  相似文献   
106.
An -tocopherol-binding protein has been isolated and purified from rabbit heart cytosol. The purified protein had an apparent molecular mass of 14,200, as derived from SDS-PAGE. The content of the protein in rabbit heart was around 11.8 g per g of tissue. The binding of -tocopherol to the purified protein was rapid, reversible, and saturable. Neither nor tocopherol could displace the bound -tocopherol from the protein, suggesting a high specificity for -tocopherol. -Tocopherol-binding protein did not bind oleate. Transfer of -tocopherol from liposomes to mitochodria was stimulated 8-fold in the presence of the binding protein, suggesting that this protein may be involved in the intracellular transport of -tocopherol in the heart.  相似文献   
107.
108.
The IGFs (IGF-I and IGF-II) are essential for normal mammalian growth and development. Their actions are mediated primarily by their interactions with the type I IGF receptor (IGF-I receptor), a transmembrane tyrosine kinase. The ligands and the IGF-I receptor are structurally related to insulin and to the insulin receptor, respectively. Analysis of evolutionary conservation has often provided insights into essential regions of molecules such as hormones and their receptors. The genes for insulin and IGFs have been partially characterized in a number of vertebrate species extending evolutionarily from humans as far back as fish. The sequences of the exons encoding the mature insulin and IGF peptides are highly conserved among vertebrate species, and IGF-I-Iike molecules are found in species whose origins extend back as much as 550 million years. The insulin receptor is also highly conserved in vertebrate species, and an insulinreceptor-like molecule has been characterized in Drosophila. In contrast, IGF-I receptors have only been characterized in mammalian species and partially studied in Xenopus, in which the tyrosine kinase domain is highly conserved. Studies are presently being undertaken to analyze in more detail the regulation of the genes encoding this important family of growth factors and the structure/function relationships in the gene products themselves. © 1993 Wiley-Liss, Inc.  相似文献   
109.
Age-related delays in bone repair remains an important clinical issue that can prolong pain and suffering. It is now well established that inflammation increases with aging and that this exacerbated inflammatory response can influence skeletal regeneration. Recently, simple dietary supplementation with beneficial probiotic bacteria has been shown to influence fracture repair in young mice. However, the contribution of the gut microbiota to age-related impairments in fracture healing remains unknown. Here, we sought to determine whether supplementation with a single beneficial probiotic species, Bifidobacterium longum (B. longum), would promote fracture repair in aged (18-month-old) female mice. We found that B. longum supplementation accelerated bony callus formation which improved mechanical properties of the fractured limb. We attribute these pro-regenerative effects of B. longum to preservation of intestinal barrier, dampened systemic inflammation, and maintenance of the microbiota community structure. Moreover, B. longum attenuated many of the fracture-induced systemic pathologies. Our study provides evidence that targeting the gut microbiota using simple dietary approaches can improve fracture healing outcomes and minimize systemic pathologies in the context of aging.  相似文献   
110.
小兴安岭兴安落叶松、泥炭藓沼泽是我国典型贫营养型沼泽。沼泽中树木生长发育不良,泥炭藓和常绿小灌木发育十分良好。这与沼泽水文状况和泥炭中营养元素和微量元素有关。各种植物的主要微量元素硼、铜、钴、锰、锌等含量不同,植物的不同器官中的含量亦不同,而且随季节而变化。狭叶杜香和甸杜的主要微量元素含量特点及其季节变化规律基本相似,两种泥炭藓相似,都与兴安落叶松有明显的区别。 本文重点探讨植物体内主要微量元素及其含量变化规律,为揭示贫营养型森林沼泽生态、为合理利用与改造沼泽提供依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号