首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1417篇
  免费   212篇
  2021年   10篇
  2020年   7篇
  2019年   9篇
  2018年   9篇
  2017年   19篇
  2016年   15篇
  2015年   32篇
  2014年   23篇
  2013年   65篇
  2012年   49篇
  2011年   39篇
  2010年   63篇
  2009年   30篇
  2008年   43篇
  2007年   54篇
  2006年   33篇
  2005年   47篇
  2004年   73篇
  2003年   48篇
  2002年   85篇
  2001年   90篇
  2000年   117篇
  1999年   58篇
  1998年   26篇
  1997年   23篇
  1996年   27篇
  1995年   29篇
  1994年   23篇
  1993年   21篇
  1992年   25篇
  1991年   30篇
  1990年   11篇
  1989年   23篇
  1988年   19篇
  1987年   17篇
  1986年   19篇
  1985年   7篇
  1984年   22篇
  1983年   23篇
  1982年   18篇
  1981年   17篇
  1980年   19篇
  1979年   18篇
  1978年   23篇
  1977年   15篇
  1976年   18篇
  1975年   29篇
  1974年   16篇
  1973年   11篇
  1970年   6篇
排序方式: 共有1629条查询结果,搜索用时 218 毫秒
991.
Abstract

The RAS and RHO family comprise two major branches of the RAS superfamily of small GTPases. These proteins function as regulated molecular switches and control cytoplasmic signaling networks that regulate a diversity of cellular processes, including cell proliferation and cell migration. In the early 1980s, mutationally activated RAS genes encoding KRAS, HRAS and NRAS were discovered in human cancer and now comprise the most frequently mutated oncogene family in cancer. Only recently, exome sequencing studies identified cancer-associated alterations in two RHO family GTPases, RAC1 and RHOA. RAS and RHO proteins share significant identity in their amino acid sequences, protein structure and biochemistry. Cancer-associated RAS mutant proteins harbor missense mutations that are found primarily at one of three mutational hotspots (G12, G13 and Q61) and have been identified as gain-of-function oncogenic alterations. Although these residues are conserved in RHO family proteins, the gain-of-function mutations found in RAC1 are found primarily at a distinct hotspot. Unexpectedly, the cancer-associated mutations found with RHOA are located at different hotspots than those found with RAS. Furthermore, since the RHOA mutations suggested a loss-of-function phenotype, it has been unclear whether RHOA functions as an oncogene or tumor suppressor in cancer development. Finally, whereas RAS mutations are found in a broad spectrum of cancer types, RHOA and RAC1 mutations occur in a highly restricted range of cancer types. In this review, we focus on RHOA missense mutations found in cancer and their role in driving tumorigenesis, with comparisons to cancer-associated mutations in RAC1 and RAS GTPases.  相似文献   
992.
Social influences on vocal development of young birds have been widely studied in oscine songbirds who learn to sing by vocal imitation of conspecifics, mainly male adults. In contrast, vocal development of non-vocal learners such as Galliformes is considered as being under strong genetic influence and independent of the social environment. In this study, we investigated the role of the mother on the vocal development of young Japanese quail (Coturnix coturnix japonica). We compared the vocal development of mothered and non-mothered chicks during the first 21 days of life. We analysed the structural changes of two vocalisations: a) the rally call, emitted during long-distance communication and in stressful situations, b) the contact call, emitted during short-distance communication when chicks are in visual and/or auditory contact with congeners. We showed that temporal and spectral structures of the two types of calls changed during development and differed between mothered and non-mothered chicks. These results demonstrate that maternal presence influences the vocal development of the young in the Japanese quail. Even if the adaptive value of such changes was not assessed, these results highlight that plasticity of vocalisations in species considered as non-vocal learners has been underestimated.  相似文献   
993.
994.
995.
In parallel with evolutionary developments, the Hsp90 molecular chaperone system shifted from a simple prokaryotic factor into an expansive network that includes a variety of cochaperones. We have taken high-throughput genomic and proteomic approaches to better understand the abundant yeast p23 cochaperone Sba1. Our work revealed an unexpected p23 network that displayed considerable independence from known Hsp90 clients. Additionally, our data uncovered a broad nuclear role for p23, contrasting with the historical dogma of restricted cytosolic activities for molecular chaperones. Validation studies demonstrated that yeast p23 was required for proper Golgi function and ribosome biogenesis, and was necessary for efficient DNA repair from a wide range of mutagens. Notably, mammalian p23 had conserved roles in these pathways as well as being necessary for proper cell mobility. Taken together, our work demonstrates that the p23 chaperone serves a broad physiological network and functions both in conjunction with and sovereign to Hsp90.  相似文献   
996.
997.
998.

Introduction

Systemic sclerosis (SSc) complicated by pulmonary arterial hypertension (PAH) carries a poor prognosis, despite pulmonary vascular dilating therapy. Platelet-derived growth factor receptor-β (PDGFR-β) and epidermal growth factor receptor (EGFR) are potential therapeutic targets for PAH because of their proliferative effects on vessel remodelling. To explore their role in SScPAH, we compared PDGFR- and EGFR-mmunoreactivity in lung tissue specimens from SScPAH. We compared staining patterns with idiopathic PAH (IPAH) and pulmonary veno-occlusive disease (PVOD), as SScPAH vasculopathy differs from IPAH and sometimes displays features of PVOD. Immunoreactivity patterns of phosphorylated PDGFR-β (pPDGFR-β) and the ligand PDGF-B were evaluated to provide more insight into the patterns of PDGFR-b activation.

Methods

Lung tissue specimens from five SScPAH, nine IPAH, six PVOD patients and five controls were examined. Immunoreactivity was scored for presence, distribution and intensity.

Results

All SScPAH and three of nine IPAH cases (P = 0.03) showed PDGFR-β-immunoreactivity in small vessels (arterioles/venules); of five SScPAH vs. two of nine IPAH cases (P = 0.02) showed venous immunoreactivity. In small vessels, intensity was stronger in SScPAH vs. IPAH. No differences were found between SScPAH and PVOD. One of five normal controls demonstrated focally mild immunoreactivity. There were no differences in PDGF-ligand and pPDGFR-b-immunoreactivity between patient groups; however, pPDGFR-b-immunoreactivity tended to be more prevalent in SScPAH small vasculature compared to IPAH. Vascular EGFR-immunoreactivity was limited to arterial and arteriolar walls, without differences between groups. No immunoreactivity was observed in vasculature of normals.

Conclusions

PDGFR-β-immunoreactivity in SScPAH is more common and intense in small- and post-capillary vessels than in IPAH and does not differ from PVOD, fitting in with histomorphological distribution of vasculopathy. PDGFR-β immunoreactivity pattern is not paralleled by pPDGFR-β or PDGF-B patterns. PDGFR-β- and EGFR-immunoreactivity of pulmonary vessels distinguishes PAH patients from controls.  相似文献   
999.
Pythium vexans fits into the internal transcribed spacer (ITS) clade K sensu Lévesque & De Cock (2004). Within clade K, P. vexans forms a distinct clade containing two enigmatic species, Pythium indigoferae and Pythium cucurbitacearum of which no ex-type strains are available. In South Africa, as well as in other regions of the world, P. vexans isolates are known to be heterogeneous in their ITS sequences and may consist of more than one species. This study aimed to investigate the diversity of South African P. vexans isolates, mainly from grapevines, but also citrus and apple using (i) phylogenetic analyses of the ITS, cytochrome c oxidase (cox) I, cox II, and β-tubulin regions and (ii) seven biometric oogonial parameters. Each of the phylogenies clustered P. vexans isolates into a single well-supported clade, distinct from other clade K species. The β-tubulin region was phylogenetically uninformative regarding the P. vexans group. The ITS phylogeny and combined cox I and II phylogenies, although each revealing several P. vexans subclades, were incongruent. One of the most striking incongruences was the presence of one cox subclade that contained two distinct ITS subclades (Ib and IV). Three groups (A-C) were subjectively identified among South African P. vexans isolates using (i) phylogenetic clades (ITS and cox), (ii) univariate analysis of oogonial diameters, and (iii) multivariate analyses of biometric oogonial parameters. Group A is considered to be P. vexans s. str. since it contained the P. vexans CBS reference strain from Van der Plaats-Niterink (1981). This group had significantly smaller oogonial diameters than group B and C isolates. Group B contained the isolates from ITS subclades Ib and IV, which formed a single cox subclade. The ITS subclade IV isolates were all sexually sterile or produced mainly abortive oospores, as opposed to the sexually fertile subclade Ib isolates, and may thus represent a distinct assemblage within group B. Although ITS subclade Ib included the P. indigoferae ex-type sequence, this group was considered to be P. vexans since South African isolates in this clade produced globose sporangia. Group C contained four apple isolates that were related to, but distinct from P. cucurbitacearum. Although P. vexans groups A-C might be distinct species, they are not described here as such due to (i) these groups only representing some of the known diversity in P. vexans, (ii) conflicting gene tree phylogenies preventing phylogenetic species identification, and (iii) sexually sterile isolates preventing the broad application of biometrical data.  相似文献   
1000.
The cyp125 gene of Rhodococcus jostii RHA1 was previously found to be highly upregulated during growth on cholesterol and the orthologue in Mycobacterium tuberculosis (rv3545c) has been implicated in pathogenesis. Here we show that cyp125 is essential for R. jostii RHA1 to grow on 3‐hydroxysterols such as cholesterol, but not on 3‐oxo sterol derivatives, and that CYP125 performs an obligate first step in cholesterol degradation. The involvement of cyp125 in sterol side‐chain degradation was confirmed by disrupting the homologous gene in Rhodococcus rhodochrous RG32, a strain that selectively degrades the cholesterol side‐chain. The RG32Ωcyp125 mutant failed to transform the side‐chain of cholesterol, but degraded that of 5‐cholestene‐26‐oic acid‐3β‐ol, a cholesterol catabolite. Spectral analysis revealed that while purified ferric CYP125RHA1 was < 10% in the low‐spin state, cholesterol (KDapp = 0.20 ± 0.08 μM), 5α‐cholestanol (KDapp = 0.15 ± 0.03 μM) and 4‐cholestene‐3‐one (KDapp = 0.20 ± 0.03 μM) further reduced the low spin character of the haem iron consistent with substrate binding. Our data indicate that CYP125 is involved in steroid C26‐carboxylic acid formation, catalysing the oxidation of C26 either to the corresponding carboxylic acid or to an intermediate state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号