首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29207篇
  免费   2132篇
  国内免费   1618篇
  32957篇
  2024年   64篇
  2023年   348篇
  2022年   832篇
  2021年   1408篇
  2020年   962篇
  2019年   1190篇
  2018年   1169篇
  2017年   831篇
  2016年   1227篇
  2015年   1896篇
  2014年   2127篇
  2013年   2291篇
  2012年   2624篇
  2011年   2296篇
  2010年   1458篇
  2009年   1237篇
  2008年   1512篇
  2007年   1333篇
  2006年   1170篇
  2005年   982篇
  2004年   797篇
  2003年   698篇
  2002年   536篇
  2001年   479篇
  2000年   379篇
  1999年   414篇
  1998年   246篇
  1997年   266篇
  1996年   252篇
  1995年   217篇
  1994年   218篇
  1993年   150篇
  1992年   216篇
  1991年   185篇
  1990年   130篇
  1989年   106篇
  1988年   79篇
  1987年   108篇
  1986年   82篇
  1985年   69篇
  1984年   52篇
  1983年   36篇
  1982年   36篇
  1981年   26篇
  1980年   21篇
  1979年   25篇
  1978年   17篇
  1975年   21篇
  1974年   18篇
  1972年   17篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
821.
822.
Xin  Jinge  Zeng  Dong  Wang  Hesong  Sun  Ning  Zhao  Ying  Dan  Yan  Pan  Kangcheng  Jing  Bo  Ni  Xueqin 《Probiotics and antimicrobial proteins》2020,12(1):184-193
Probiotics and Antimicrobial Proteins - Numerous studies have investigated the beneficial effects of Lactobacillus johnsonii strain BS15 on mice and broilers. This study aimed to understand the...  相似文献   
823.
盐沼植被是沿海水体中溶解有机物(Dissolved Organic Matter, DOM)的重要贡献者。然而,不同盐沼植物释放DOM的动力学特征尚缺乏系统研究和比较。黄河三角洲湿地是中国东海岸面积最大,保护最完善的沿海生态系统之一。本论文研究了2016年10月从黄河三角洲(Yellow River Delta, YRD)盐沼中采集的三种常见沼泽植物(芦苇(Phragmites australis),碱蓬(Suaeda salsa)和獐茅(Aeluropus littoralis)的DOM释放过程。通过测定溶解有机碳(Dissolved Organic Carbon, DOC)和溶解氮(Dissolved Nitrogen, DN)发现,植物叶片释放的DOM浓度远高于其根和茎。在27天的培养期内,平均有15%的生物碳和30%的生物氮以DOC和DN的形式通过植物叶片释放。从植物中释放的DOM非常不稳定,在27天的培养期内,细菌共消耗了92.4%–98.1%的DOC和88.0%–94.6%的DN。植物释放DOM的荧光特性表明,发色溶解的有机物(Chromophoric Dissolved Organic Matter, CDOM)是DOM的主要组分,而类蛋白组分是植物释放CDOM的主要组分。细菌的降解作用改变了DOM的荧光性质和化学组成。上述的室内研究结果得到了实地调查的充分支撑,表明在深秋时期黄河口湿地有大量DOM溢出。本研究结果表明,盐沼植物释放的DOM是沼泽和沿海水域DOC和DN的重要来源,而且易降解DOC和DN为黄河口湿地和邻近沿海水域中的微生物群落提供了重要的食物来源。  相似文献   
824.
BackgroundPatients with locally advanced rectal cancer (LARC) are more likely to suffer local recurrence and distant metastases, contributing to worse prognoses. Considering the provided dramatic reduction of local recurrences, neoadjuvant CRT (nCRT) followed by curative resection with total mesorectal excision (TME) and adjuvant chemotherapy has been established as standard therapy for LARC patients. However, the efficacy of adding bevacizumab in neoadjuvant therapy, especially in induction therapy-containing nCRT for LARC patients remains uncertain.MaterialsPubMed, Embase, and Web of Science were searched to retrieve records on the application of bevacizumab in a neoadjuvant setting for LARC patients. The endpoints of interest were pCR and the rates of patients suffering Grade 3/4 bevacizumab-specific adverse events, namely bleeding, wound healing complications, and gastrointestinal perforation.Results29 cohorts covering 1134 subjects were included in this systematic review. The pooled pCR rate for bevacizumab-relevant cohorts was 21% (95% confidence interval (95% CI), 17–25%; I2 = 61.8%), the pooled estimates of Grade 3/4 bleeding, Grade 3/4 wound healing complication, Grade 3/4 gastrointestinal perforation were 1% (95% CI, 0–3%; I2 = 0%), 2% (95% CI, 1–5%; I2 = 4.7%), and 2% (95% CI, 0–5%; I2 = 0%), respectively.ConclusionThe addition of bevacizumab in the nCRT, especially in the TNT, for LARC patients provides promising efficacy and acceptable safety. However, the results should be interpreted cautiously due to the small amount of relevant data and need further confirmation by future studies.  相似文献   
825.
Hepatocellular carcinoma (HCC) in a liver with advanced-stage chronic hepatitis C (CHC) is induced by hepatitis C virus, which chronically infects about 170 million people worldwide. To elucidate the associations between gene groups in hepatocellular carcinogenesis, we analyzed the profiles of the genes characteristically expressed in the CHC and HCC cell stages by a statistical method for inferring the network between gene systems based on the graphical Gaussian model. A systematic evaluation of the inferred network in terms of the biological knowledge revealed that the inferred network was strongly involved in the known gene-gene interactions with high significance Open image in new window , and that the clusters characterized by different cancer-related responses were associated with those of the gene groups related to metabolic pathways and morphological events. Although some relationships in the network remain to be interpreted, the analyses revealed a snapshot of the orchestrated expression of cancer-related groups and some pathways related with metabolisms and morphological events in hepatocellular carcinogenesis, and thus provide possible clues on the disease mechanism and insights that address the gap between molecular and clinical assessments.  相似文献   
826.
T cell immunoglobulin and mucin domain (Tim)-3 is expressed on activated CD4+ and CD8+ T cells. Identification of galectin-9 as a ligand for Tim-3 has now firmly established the Tim-3/galectin-9 pathway, which results in apoptosis of effector CD4+ and CD8+ T cells. Moreover, Th17 cells are a recently discovered CD4+ effector T cell, which are important in antimicrobial immunity. Whether the Tim-3/galectin-9 pathway affects Th17 immunity has not been elucidated. Here, we demonstrated expression of Tim-3 on Th17 cells by flow cytometry. Th17-skewed cells were sensitive to galectin-9-induced apoptosis. In vitro administration of galectin-9 decreased stimulated Th17 cells and inhibited production of IL-17. Interestingly, Klebsiella pneumoniae (K. pneumoniae) infection led to enhanced IL-17 levels. Recombinant galectin-9 significantly decreased IL-17 in vivo, which resulted in reduced bacterial clearance and high mortality. These observations suggest that the Tim-3/galectin-9 pathway plays an important role in termination of Th17-immune responses, and could be a therapeutic target for inflammatory diseases.  相似文献   
827.
828.
In the presence of Ca2+ (2.5 mM) and using [14C]arachidonoyl phosphatidylinositol (PI) membrane as substrate, phosphatidylinositol-specific phospholipase C (PI-PLC) (EC 3.1.4.10) in rat brain synaptosomes was activated by deoxycholate but not taurocholate. Calcium stimulated enzymic hydrolysis by both detergents, but the stimulatory effect of taurocholate was less than that of deoxycholate. Peak stimulation for deoxycholate was observed at 1 mg/ml, whereas that for taurocholate was 4 mg/ml. When 1 mM EDTA was added to the taurocholate (4 mg/ml) and Ca2+ (3.5 mM) system, synaptosomal PI-PLC activity was greatly stimulated, to almost the same level as the deoxycholate + Ca2+ system. This system required the presence of all three factors, and EGTA could not effectively replace EDTA in the stimulatory action. The detergent-induced hydrolysis of synaptosomal PI by the deoxycholate + Ca2+ and the taurocholate + Ca2+ + EDTA systems was strongly inhibited by divalent metal ions such as Zn2+, Cu2+, Pb2+, and Fe2+, whereas Mg2+ and Ca2+ were ineffective. Nevertheless, only the deoxycholate + Ca2+ system was responsive to enzyme inhibition by membrane-perturbing agents such as lysophospholipids and free fatty acids. The specific requirement for EDTA in the taurocholate system may be due to the release of a pool of inhibitory divalent metal ions from the membranes.  相似文献   
829.
Enantiomeric resolution of thyroxine and tocainide was achieved on a (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid column. The mobile phases were methanol/water (4:1, v/v) and methanol/water containing 5 mM sulfuric acid (4:1, v/v) for tocainide and thyroxine respectively. The flow rate was 0.5 ml/min. The effect of the acidity on the chiral resolution of these drugs was studied. Detection was at 220 nm for both drugs. The values of alpha and Rs were 2.08-3.11 and 1.00-2.60, respectively, for thyroxine while the values of alpha and Rs were 1.13-1.26 and 0.10-1.30, respectively, for tocainide.  相似文献   
830.
The cytochrome P450 (CYP) superfamily plays a key role in the oxidative metabolism of a wide range of drugs and exogenous chemicals. CYP2C8 is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel in the human liver. Nearly all previous works about polymorphic variants of CYP2C8 were focused on unpurified proteins, either cells or human liver microsomes; therefore their structure–function relationships were unclear. In this study, two polymorphic enzymes of CYP2C8 (CYP2C8.4 (I264M) and CYP2C8 P404A) were expressed in E. coli and purified. Metabolic activities of paclitaxel by the two purified polymorphic enzymes were observed. The activity of CYP2C8.4 was 25% and CYP2C8 P404A was 30% of that of WT CYP2C8, respectively. Their structure–function relationships were systematically investigated for the first time. Paclitaxel binding ability of CYP2C8.4 increased about two times while CYP2C8 P404A decreased about two times than that of WT CYP2C8. The two polymorphic mutant sites of I264 and P404, located far from active site and substrate binding sites, significantly affect heme and/or substrate binding. This study indicated that two important nonsubstrate recognition site (SRS) residues of CYP2C8 are closely related to heme binding and/or substrate binding. This discovery could be valuable for explaining clinically individual differences in the metabolism of drugs and provides instructed information for individualized medication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号