首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   759篇
  免费   48篇
  国内免费   1篇
  2023年   3篇
  2022年   9篇
  2021年   26篇
  2020年   18篇
  2019年   18篇
  2018年   26篇
  2017年   16篇
  2016年   26篇
  2015年   49篇
  2014年   50篇
  2013年   61篇
  2012年   80篇
  2011年   83篇
  2010年   43篇
  2009年   37篇
  2008年   60篇
  2007年   39篇
  2006年   33篇
  2005年   27篇
  2004年   26篇
  2003年   11篇
  2002年   24篇
  2001年   12篇
  2000年   13篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1988年   2篇
排序方式: 共有808条查询结果,搜索用时 93 毫秒
111.
Bacterial cyclic nucleotide gated (bCNG) channels are generally a nonmechanosensitive subset of the mechanosensitive channel of small conductance (MscS) superfamily. bCNG channels are composed of an MscS channel domain, a linking domain, and a cyclic nucleotide binding domain. Among bCNG channels, the channel domain of Ss-bCNGa, a bCNG channel from Synechocystis sp. PCC 6803, is most identical to Escherichia coli (Ec) MscS. This channel also exhibits limited mechanosensation in response to osmotic downshock assays, making it the only known full-length bCNG channel to respond to hypoosmotic stress. Here, we compare and contrast the ability of Ss-bCNGa to gate in response to mechanical tension with Se-bCNG, a nonmechanosensitive bCNG channel, and Ec-MscS, a prototypical mechanosensitive channel. Compared with Ec-MscS, Ss-bCNGa only exhibits limited mechanosensation, which is most likely a result of the inability of Ss-bCNGa to form the strong lipid contacts needed for significant function. Unlike Ec-MscS, Ss-bCNGa displays a mechanical response that increases with protein expression level, which may result from channel clustering driven by interchannel cation?C?? interactions.  相似文献   
112.
113.
Paik H  Kim J  Lee S  Heo HS  Hur CG  Lee D 《Molecules and cells》2012,33(4):351-361
The identification of true causal loci to unravel the statistical evidence of genotype-phenotype correlations and the biological relevance of selected single-nucleotide polymorphisms (SNPs) is a challenging issue in genome-wide association studies (GWAS). Here, we introduced a novel method for the prioritization of SNPs based on p-values from GWAS. The method uses functional evidence from populations, including phenotype-associated gene expressions. Based on the concept of genetic interactions, such as perturbation of gene expression by genetic variation, phenotype and gene expression related SNPs were prioritized by adjusting the p-values of SNPs. We applied our method to GWAS data related to drug-induced cytotoxicity. Then, we prioritized loci that potentially play a role in druginduced cytotoxicity. By generating an interaction model, our approach allowed us not only to identify causal loci, but also to find intermediate nodes that regulate the flow of information among causal loci, perturbed gene expression, and resulting phenotypic variation.  相似文献   
114.
Yang HW  Shin MG  Lee S  Kim JR  Park WS  Cho KH  Meyer T  Do Heo W 《Molecular cell》2012,47(2):281-290
Phosphoinositide 3-kinases (PI3Ks) and Ras and Rho family small GTPases are key regulators of cell polarization, motility, and chemotaxis. They influence each other's activities by direct and indirect feedback processes that are only partially understood. Here, we show that 21 small GTPase homologs activate PI3K. Using a microscopy-based binding assay, we show that K-Ras, H-Ras, and five homologous Ras family small GTPases function upstream of PI3K by directly binding the PI3K catalytic subunit, p110. In contrast, several Rho family small GTPases activated PI3K by an indirect cooperative positive feedback that required a combination of Rac, CDC42, and RhoG small GTPase activities. Thus, a distributed network of Ras and Rho family small GTPases induces and reinforces PI3K activity, explaining past challenges to elucidate the specific relevance of different small GTPases in regulating PI3K and controlling cell polarization and chemotaxis.  相似文献   
115.
Interleukin (IL)-10 is an anti-inflammatory cytokine that modulates sepsis by decreasing pro-inflammatory cytokine production and chemokine expression. In this study, IL-10-deficient and wild-type (WT) mice were infected with Corynebacterium kutscheri to determine if the absence of IL-10 altered the protective immunity and pathogenesis. After infection, IL-10 knockout (KO) mice had a higher survival rate than WT mice. The decrease of body weight and the increased weight of organs such as liver and spleen were greater in WT mice. Bacterial counts were significantly increased after inoculation in WT mice over those in IL-10 KO mice. WT mice had more granulomatous inflammation and coagulative necrosis in the liver and spleen, lymphocyte depletion in lymphoid follicles, and apoptosis of immune cells in the spleen. WT mice had significantly higher plasma concentrations of aspartate aminotransferase and alanine aminotransferase. Furthermore, more upregulation of tumor necrosis factor-α and IL-4 in the plasma, macrophage inflammatory protein-2, keratinocyte-derived chemokine, inducible nitric oxide synthase, and interferon-inducible protein 10 mRNA in the spleen were observed in WT mice after inoculation. These results suggest that the lack of IL-10 contributes to an increase in the systemic clearance of C. kutscheri, and that IL-10 plays a detrimental role in controlling systemic C. kutscheri infection.  相似文献   
116.
The complexes of the electron transport chain associate into large macromolecular assemblies, which are believed to facilitate efficient electron flow. We have identified a conserved mitochondrial protein, named respiratory supercomplex factor 1 (Rcf1-Yml030w), that is required for the normal assembly of respiratory supercomplexes. We demonstrate that Rcf1 stably and independently associates with both Complex III and Complex IV of the electron transport chain. Deletion of the RCF1 gene caused impaired respiration, probably as a result of destabilization of respiratory supercomplexes. Consistent with the hypothetical function of these respiratory assemblies, loss of RCF1 caused elevated mitochondrial oxidative stress and damage. Finally, we show that knockdown of HIG2A, a mammalian homolog of RCF1, causes impaired supercomplex formation. We suggest that Rcf1 is a member of an evolutionarily conserved protein family that acts to promote respiratory supercomplex assembly and activity.  相似文献   
117.
Upon phagocytosis, Legionella pneumophila translocates numerous effector proteins into host cells to perturb cellular metabolism and immunity, ultimately establishing intracellular survival and growth. VipD of L. pneumophila belongs to a family of bacterial effectors that contain the N-terminal lipase domain and the C-terminal domain with an unknown function. We report the crystal structure of VipD and show that its C-terminal domain robustly interferes with endosomal trafficking through tight and selective interactions with Rab5 and Rab22. This domain, which is not significantly similar to any known protein structure, potently interacts with the GTP-bound active form of the two Rabs by recognizing a hydrophobic triad conserved in Rabs. These interactions prevent Rab5 and Rab22 from binding to downstream effectors Rabaptin-5, Rabenosyn-5 and EEA1, consequently blocking endosomal trafficking and subsequent lysosomal degradation of endocytic materials in macrophage cells. Together, this work reveals endosomal trafficking as a target of L. pneumophila and delineates the underlying molecular mechanism.  相似文献   
118.
Severe acute respiratory syndrome (SARS) is a lifethreatening emerging respiratory disease caused by the coronavirus, SARS-CoV. The nucleocapsid (N) protein of SARS-CoV is highly antigenic and may be a suitable candidate for diagnostic applications. We constructed truncated recombinant N proteins (N1 [1-422 aa], N2 [1- 109 aa], and N3 [110-422 aa]) and determined their antigenicity by Western blotting using convalescent SARS serum. The recombinants containing N1 and N3 reacted with convalescent SARS serum in Western blotting. However, the recombinant with N2 did not. In ELISA using N1 or N3 as the antigens, positive results were observed in 10 of 10 (100%) SARS-CoV-positive human sera. None of 50 healthy sera gave positive results in either assay. These data indicate that the ELISA using N1 or N3 has high sensitivity and specificity. These results suggest that the middle or C-terminal region of the SARS N protein is important for eliciting antibodies against SARS-CoV during the immune response, and ELISA reactions using N1 or N3 may be a valuable tool for SARS diagnosis.  相似文献   
119.
Low-density lipoprotein (LDL) induces cell proliferation in human aortic smooth muscle cells (hAoSMCs), which may be involved in atherogenesis and intimal hyperplasia. Recent studies have demonstrated that Cl- channels are related to vessel cell proliferation induced by a variety of stimuli. In this study, we investigated a potential role of Cl-channels in the signaling pathway of LDL effects on hAoSMC proliferation with a focus on the activation of Erk1/2-PI3K/Akt and the subsequent upregulation of Egr-1. Cl- channel blockers, DIDS, but neither NPPB nor Furosemide, completely abolished the LDL-induced DNA synthesis and cell proliferation. Moreover, DIDS, but not NPPB, significantly decreased LDL-stimulated Cl- concentration, as judged by flow cytometry analysis using MQAE as a Cl- -detection dye. DIDS pretreatment completely abolished the activation of Erk1/2 and PI3K/Akt in a dose-dependent manner that is the hallmark of LDL activation, as judged by Western blot and proliferation assays. Moreover, pretreatment with DIDS (Cl- channel blockers) but not LY294002 (PI3K inhibitors) completely abolished the LDL-induced upregulation of Egr-1 to the same extent as PD98059 (MEK inhibitors to inhibit Erk), as judged by Western blot and luciferase reporter assays. This is the first report, to our knowledge, that DIDS-sensitive Cl- channels play a key role in the LDL-induced cell proliferation of hAoSMCs via the activation of Erk1/2 and PI3K/Akt and the upregulation of Egr-1.  相似文献   
120.
Park JH  Lee MY  Heo JS  Han HJ 《Cell proliferation》2008,41(5):786-802
Abstract. Objectives: The gap junction protein, connexin (Cx), plays an important role in maintaining cellular homeostasis and cell proliferation by allowing communication between adjacent cells. Therefore, this study has examined the effect of epidermal growth factor (EGF) on Cx43 and its relationship to proliferation of mouse embryonic stem cells. Materials and methods: Expressions of Cx43, mitogen‐activated protein kinases (MAPKs) and cell cycle regulatory proteins were assessed by Western blot analysis. Cell proliferation was assayed with [3H]thymidine incorporation. Intercellular communication level was measured by a scrape loading/dye transfer method. Results: The results showed that EGF increased the level of Cx43 phosphorylation in a time‐ (≥5 min) and dose‐ (≥10 ng/mL) dependent manner. Indeed, EGF‐induced increase in phospho‐Cx43 level was significantly blocked by either AG 1478 or herbimycin A (tyrosine kinase inhibitors). EGF increased Ca2+ influx and protein kinase C (PKC) translocation from the cytosolic compartment to the membrane compartment. Moreover, pre‐treatment with BAPTA‐AM (an intracellular Ca2+ chelator), EGTA (an extracellular Ca2+ chelator), bisindolylmaleimide I or staurosporine (PKC inhibitors) inhibited the EGF‐induced phosphorylation of Cx43. EGF induced phosphorylation of p38 and p44/42 MAPKs, and this was blocked by SB 203580 (a p38 MAPK inhibitor) and PD 98059 (a p44/42 MAPK inhibitor), respectively. EGF or 18α‐glycyrrhetinic acid (GA; a gap junction inhibitor) increased expression levels of the protooncogenes (c‐fos, c‐jun and c‐myc), cell cycle regulatory proteins [cyclin D1, cyclin E, cyclin‐dependent kinase 2 (CDK2), CDK4 and p‐Rb], [3H]thymidine incorporation and cell number, but decreased expression levels of the p21WAF1/Cip1 and p27Kip1, CDK inhibitory proteins. Transfection of Cx43 siRNA also increased the level of [3H]thymidine incorporation and cell number. EGF, 18α‐GA or transfection of Cx43 siRNA increased 2‐DG uptake and GLUT‐1 protein expression. Conclusions: EGF‐induced phosphorylation of Cx43, which was mediated by the Ca2+/PKC, p44/42 and p38 MAPKs pathways, partially contributed to regulation of mouse embryonic stem cell proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号