全文获取类型
收费全文 | 8281篇 |
免费 | 831篇 |
国内免费 | 7篇 |
专业分类
9119篇 |
出版年
2022年 | 58篇 |
2021年 | 94篇 |
2020年 | 65篇 |
2019年 | 52篇 |
2018年 | 92篇 |
2017年 | 84篇 |
2016年 | 152篇 |
2015年 | 258篇 |
2014年 | 297篇 |
2013年 | 404篇 |
2012年 | 488篇 |
2011年 | 499篇 |
2010年 | 346篇 |
2009年 | 301篇 |
2008年 | 461篇 |
2007年 | 462篇 |
2006年 | 426篇 |
2005年 | 468篇 |
2004年 | 452篇 |
2003年 | 488篇 |
2002年 | 439篇 |
2001年 | 112篇 |
2000年 | 111篇 |
1999年 | 162篇 |
1998年 | 141篇 |
1997年 | 94篇 |
1996年 | 96篇 |
1995年 | 85篇 |
1994年 | 92篇 |
1993年 | 95篇 |
1992年 | 115篇 |
1991年 | 94篇 |
1990年 | 99篇 |
1989年 | 86篇 |
1988年 | 72篇 |
1987年 | 77篇 |
1986年 | 64篇 |
1985年 | 67篇 |
1984年 | 82篇 |
1983年 | 70篇 |
1982年 | 81篇 |
1981年 | 76篇 |
1980年 | 93篇 |
1979年 | 63篇 |
1978年 | 64篇 |
1977年 | 67篇 |
1976年 | 55篇 |
1975年 | 56篇 |
1974年 | 53篇 |
1973年 | 59篇 |
排序方式: 共有9119条查询结果,搜索用时 15 毫秒
141.
142.
Mary W. Corrigan Christine L. Kerwin-Iosue Alexander S. Kuczmarski Kunj B. Amin Dennis D. Wykoff 《PloS one》2013,8(7)
In vivo assembly of plasmids has become an increasingly used process, as high throughput studies in molecular biology seek to examine gene function. In this study, we investigated the plasmid construction technique called gap repair cloning (GRC) in two closely related species of yeast – Saccharomyces cerevisiae and Candida glabrata. GRC utilizes homologous recombination (HR) activity to join a linear vector and a linear piece of DNA that contains base pair homology. We demonstrate that a minimum of 20 bp of homology on each side of the linear DNA is required for GRC to occur with at least 10% efficiency. Between the two species, we determine that S. cerevisiae is slightly more efficient at performing GRC. GRC is less efficient in rad52 deletion mutants, which are defective in HR in both species. In dnl4 deletion mutants, which perform less non-homologous end joining (NHEJ), the frequency of GRC increases in C. glabrata, whereas GRC frequency only minimally increases in S. cerevisiae, suggesting that NHEJ is more prevalent in C. glabrata. Our studies allow for a model of the fate of linear DNA when transformed into yeast cells. This model is not the same for both species. Most significantly, during GRC, C. glabrata performs NHEJ activity at a detectable rate (>5%), while S. cerevisiae does not. Our model suggests that S. cerevisiae is more efficient at HR because NHEJ is less prevalent than in C. glabrata. This work demonstrates the determinants for GRC and that while C. glabrata has a lower efficiency of GRC, this species still provides a viable option for GRC. 相似文献
143.
The purpose of this study was to investigate the influence of hypothalamic extract, astrocyte co-culture, and astrocyte-conditioned medium on the barrier function of an in vitro model of the blood-brain barrier. Porcine brain capillary endothelial cells were grown on polycarbonate membranes suspended between two chambers of media, representing the capillary lumen and brain interstitium. Endothelial cells grown alone and cocultured with astrocytes were cultured in growth medium with or without 50 g/mL hypothalamic extract. An additional treatment consisted of endothelial cells cultured in growth medium that was first conditioned by astrocytes. Coculture consisted of a noncontact model with astrocytes attached to the bottom of the abluminal chamber. Barrier function of the endothelial cells was tested on days 1 through 9 post-seeding by measuring permeability to macromolecules (albumin) and small ions (electrical resistance). Resistance to the passage of macromolecules and small ions was greatest for endothelial cells grown without astro-cytes in growth medium supplemented with hypothalamic extract. This barrier was maximal during days 4 through 7 post-seeding and was significantly less permeable than the barrier formed by endothelial cells grown in un-supplemented growth medium, in coculture with astrocytes, or in astrocyte-conditioned medium. These results demonstrate that a noncontact coculture with astro-cytes did not enhance the integrity of this in vitro BBB model employing porcine brain capillary endothelial cells, but barrier function was increased when the model's medium was supplemented with hypothalamic extract. 相似文献
144.
Fuchs Marc Klas Ferdinand E. McFerson James R. Gonsalves Dennis 《Transgenic research》1998,7(6):449-462
Transgenic melon and squash containing the coat protein (CP) gene of the aphid transmissible strain WL of cucumber mosaic cucumovirus (CMV) were grown under field conditions to determine if they would assist the spread of the aphid non-transmissible strain C of CMV, possibly through heterologous encapsidation and recombination. Transgenic melon were susceptible to CMV strain C whereas transgenic squash were resistant although the latter occasionally developed chlorotic blotches on lower leaves. Transgenic squash line ZW-20, one of the parents of commercialized cultivar Freedom II, which expresses the CP genes of the aphid transmissible strains FL of zucchini yellow mosaic (ZYMV) and watermelon mosaic virus 2 (WMV 2) potyviruses was also tested. Line ZW-20 is resistant to ZYMV and WMV 2 but is susceptible to CMV. Field experiments conducted over two consecutive years showed that aphid-vectored spread of CMV strain C did not occur from any of the CMV strain C-challenge inoculated transgenic plants to any of the uninoculated CMV-susceptible non- transgenic plants. Although CMV was detected in 3% (22/764) of the uninoculated plants, several assays including ELISA, RT- PCR-RFLP, identification of CP amino acid at position 168, and aphid transmission tests demonstrated that these CMV isolates were distinct from strain C. Instead, they were non-targeted CMV isolates that came from outside the field plots. This is the first report on field experiments designed to determine the potential of transgenic plants expressing CP genes for triggering changes in virus-vector specificity. Our results indicate that transgenic plants expressing CP genes of aphid transmissible strains of CMV, ZYMV, and WMV 2 are unlikely to mediate the spread of aphid non-transmissible strains of CMV. This finding is of practical relevance because transgenic crops expressing the three CP genes are targeted for commercial release, and because CMV is economically important, has a wide host range, and is widespread worldwide. 相似文献
145.
Tianfei Peng Dennis Derstroff Lea Maus Timo Bauer Christoph Grüter 《Genes, Brain & Behavior》2021,20(4):e12722
Foraging behavior is crucial for the development of a honeybee colony. Biogenic amines are key mediators of learning and the transition from in-hive tasks to foraging. Foragers vary considerably in their behavior, but whether and how this behavioral diversity depends on biogenic amines is not yet well understood. For example, forager age, cumulative foraging activity or foraging state may all be linked to biogenic amine signaling. Furthermore, expression levels may fluctuate depending on daytime. We tested if these intrinsic and extrinsic factors are linked to biogenic amine signaling by quantifying the expression of octopamine, dopamine and tyramine receptor genes in the mushroom bodies, important tissues for learning and memory. We found that older foragers had a significantly higher expression of Amdop1, Amdop2, AmoctαR1, and AmoctβR1 compared to younger foragers, whereas Amtar1 showed the opposite pattern. Surprisingly, our measures of cumulative foraging activity were not related to the expression of the same receptor genes in the mushroom bodies. Furthermore, we trained foragers to collect sucrose solution at a specific time of day and tested if the foraging state of time-trained foragers affected receptor gene expression. Bees engaged in foraging had a higher expression of Amdop1 and AmoctβR3/4 than inactive foragers. Finally, the expression of Amdop1, Amdop3, AmoctαR1, and Amtar1 also varied with daytime. Our results show that receptor gene expression in forager mushroom bodies is complex and depends on both intrinsic and extrinsic factors. 相似文献
146.
Mohammad Mahfuzul Haque Mohammed Fadlalla Zhi-Qiang Wang Sougata Sinha Ray Koustubh Panda Dennis J. Stuehr 《The Journal of biological chemistry》2009,284(29):19237-19247
Nitric-oxide synthases (NOSs) are calmodulin-dependent flavoheme enzymes that oxidize l-Arg to nitric oxide (NO) and l-citrulline. Their catalytic behaviors are complex and are determined by their rates of heme reduction (kr), ferric heme-NO dissociation (kd), and ferrous heme-NO oxidation (kox). We found that point mutation (E762N) of a conserved residue on the enzyme''s FMN subdomain caused the NO synthesis activity to double compared with wild type nNOS. However, in the absence of l-Arg, NADPH oxidation rates suggested that electron flux through the heme was slower in E762N nNOS, and this correlated with the mutant having a 60% slower kr. During NO synthesis, little heme-NO complex accumulated in the mutant, compared with ∼50–70% of the wild-type nNOS accumulating as this complex. This suggested that the E762N nNOS is hyperactive because it minimizes buildup of an inactive ferrous heme-NO complex during NO synthesis. Indeed, we found that kox was 2 times faster in the E762N mutant than in wild-type nNOS. The mutational effect on kox was independent of calmodulin. Computer simulation and experimental measures both indicated that the slower kr and faster kox of E762N nNOS combine to lower its apparent Km,O2 for NO synthesis by at least 5-fold, which in turn increases its V/Km value and enables it to be hyperactive in steady-state NO synthesis. Our work underscores how sensitive nNOS activity is to changes in the kox and reveals a novel means for the FMN module or protein-protein interactions to alter nNOS activity.Nitric oxide (NO)2 is a biological mediator that is produced in animals by three NO synthase isozymes (NOS, EC 1.14.13.39): inducible NOS (iNOS), neuronal NOS (nNOS), and endothelial NOS (eNOS) (1, 2). The NOS are modular enzymes composed of an N-terminal oxygenase domain and a C-terminal flavoprotein domain, with a calmodulin (CaM)-binding site connecting the two domains (3). During NO synthesis, the flavoprotein domain transfers NADPH-derived electrons through its FAD and FMN cofactors to a heme located in the oxygenase domain. The FMN-to-heme electron transfer enables heme-dependent oxygen activation and a stepwise conversion of l-Arg to NO and citrulline (4, 5). Heme reduction also requires that CaM be bound to NOS and is rate-limiting for NO biosynthesis (6–9).NOS enzymes operate under the constraint of having their newly made NO bind to the ferric heme before it can exit the enzyme (10). How this intrinsic heme-NO binding event impacts NOS catalytic cycling is shown in Fig. 1 and has previously been discussed in detail (10–13). The l-Arg to NO biosynthetic reaction (FeIII to FeIIINO in Fig. 1) is limited by the rate of ferric heme reduction (kr), because all biosynthetic steps downstream are faster than kr. However, once the ferric heme-NO complex forms at the end of each catalytic cycle, it can either dissociate to release NO into the medium (at a rate kd as shown in Fig. 1) or become reduced by the flavoprotein domain (at a rate k′r in Fig. 1; equal to kr) to form the enzyme ferrous heme-NO species (FeIINO), which releases NO very slowly (11, 12). Consequently, two cycles compete during steady-state NO synthesis (Fig. 1); NO dissociation from the ferric heme (kd) is part of a “productive cycle” that releases NO and is essential for NOS bioactivity, whereas reduction of the ferric heme-NO complex (kr′) channels the enzyme into a “futile cycle” that actually represents a NO dioxygenase activity. The rate of futile cycling is also determined by the rate of O2 reaction with the ferrous heme-NO complex (at a rate kox in Fig. 1), which regenerates the ferric enzyme. Surprisingly, NOS enzymes have evolved to have a broad range of kr (varies 40×), kox (varies 15×), and kd (varies 30×) values (Table S1) (12). This causes each NOS to distribute quite differently during steady-state NO synthesis and gives each NOS a unique catalytic profile (12).Open in a separate windowFIGURE 1.Global kinetic model for NOS catalysis. Ferric enzyme reduction (kr) is rate-limiting for the biosynthetic reactions (central linear portion). kcat1 and kcat2 are the conversion rates of the enzyme FeIIO2 species to products in the l-Arg and Nω-hydroxy-l-arginine (NOHA) reactions, respectively. The ferric heme-NO product complex (FeIIINO) can either release NO (kd) or become reduced (k′r) to a ferrous heme-NO complex (FeIINO), which reacts with O2 (kox) to regenerate ferric enzyme. Enzyme partitioning and NO release are determined by the relative rates of kr, kox, and kd. This figure is adapted from Ref. 12.The enzyme physical and electronic factors that may set and regulate each of the three kinetic parameters (kr, kox, and kd) in NOS enzymes remain to be fully described. At present, the composition of the NOS flavoprotein domain and CaM appear to be primarily responsible for determining the kr (14–17), whereas the composition of the NOS oxygenase domain is presumed to determine the kd and kox (18, 19). Indeed, our recent point mutagenesis study identified a patch of electronegative residues on the FMN subdomain that are required to maintain a normal kr and NO synthesis activity in nNOS, suggesting that subdomain electrostatic interactions are important in the process (20). We found particularly large effects when the negative charge at Glu762 was neutralized via mutation to Asn. Remarkably, the NO synthesis activity of E762N nNOS was double that of wild-type nNOS, despite the mutant displaying a slow kr that was half of wild type. In the current report, we show that the E762N mutation has an additional, unsuspected effect on the kox kinetic parameter of nNOS. How this effect alters distribution of the nNOS enzyme during steady-state catalysis, impacts the apparent Km,O2, and leads to hyperactive NO synthesis is described. Our finding that the nNOS flavoprotein domain can tune a key kinetic parameter that defines the rate of a heme-based reaction in the nNOS oxygenase domain is unusual and suggests a means by which protein-protein interactions could regulate the catalytic behavior of nNOS. 相似文献
147.
The prediction of adult emergence times in insect populations can be greatly complicated by microclimatic gradients, especially in circumstances where distributions of juveniles along those gradients vary from year to year. To investigate adult emergence patterns in topographically heterogeneous habitats, we built a model of postdiapause development of the Bay checkerspot butterfly, Euphydryas editha bayensis. The model uses slope-specific insolation as the rate-controlling variable, and accounts for both solar exposure of the habitat and cloud cover. Instar-specific larval mass gains per unit of insolation were determined from mark-recapture experiments. A small correction for daily low temperatures was used to calibrate the model to five years of field data on larval mass. The model predicted mean mass of 90% of larval samples within 4 clear days over a 70–120 day growing season. The magnitude of spatial variation in emergence times across habitat slopes is greater than annual variation in emergence times due to yearly weather conditions. Historical variation (yearly shifts in larval distributions across slopes) is an important determinant of mean population emergence dates. All of these factors need to be considered in understanding adult emergence phenology in this butterfly and in other insects inhabiting heterogeneous thermal environments. Such an understanding can be useful in managing insect populations for both pest control and conservation. 相似文献
148.
Hot topic or hot air? Climate change and malaria resurgence in East African highlands 总被引:1,自引:0,他引:1
Hay SI Rogers DJ Randolph SE Stern DI Cox J Shanks GD Snow RW 《Trends in parasitology》2002,18(12):530-534
Climate has a significant impact on malaria incidence and we have predicted that forecast climate changes might cause some modifications to the present global distribution of malaria close to its present boundaries. However, it is quite another matter to attribute recent resurgences of malaria in the highlands of East Africa to climate change. Analyses of malaria time-series at such sites have shown that malaria incidence has increased in the absence of co-varying changes in climate. We find the widespread increase in resistance of the malaria parasite to drugs and the decrease in vector control activities to be more likely driving forces behind the malaria resurgence. 相似文献
149.
Cloning and orientation of the gene encoding polynucleotide phosphorylase in Escherichia coli. 总被引:1,自引:2,他引:1 下载免费PDF全文
Mutations which affect the activity of polynucleotide phosphorylase (PNPase) map near 69 min on the bacterial chromosome. This region of the chromosome has been cloned by inserting the kanamycin-resistant transposon Tn5 near the argG and mtr loci at 68.5 min. Large SalI fragments of chromosomal DNA containing the Tn5 element were inserted into pBR322, and selection was made for kanamycin-resistant recombinant plasmids. Two of these plasmids were found to produce high levels of PNPase activity in both wild-type and host strains lacking PNPase activity. The pnp gene was further localized and subcloned on a 4.8 kilobase HindIII-EcoRI fragment. This fragment was shown to encode an 84,000-molecular weight protein which comigrated with purified PNPase during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The orientation of the pnp gene was determined by insertion of Tn5 into the 4.8 kilobase fragment cloned in pBR322. Some of the insertions had lost the ability to elevate the level of PNPase activity in the host bacterium. Restriction mapping of the positions of the Tn5 insertions and analysis of plasmid-encoded polypeptides in UV-irradiated maxi-cells indicated that the pnp gene is oriented in the counterclockwise direction on the bacterial chromosome. 相似文献
150.
Barjot C Hartigan-O'Connor D Salvatori G Scott JM Chamberlain JS 《The journal of gene medicine》2002,4(5):480-489