首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7701篇
  免费   779篇
  国内免费   7篇
  2022年   45篇
  2021年   87篇
  2020年   61篇
  2019年   50篇
  2018年   85篇
  2017年   78篇
  2016年   144篇
  2015年   250篇
  2014年   273篇
  2013年   383篇
  2012年   461篇
  2011年   473篇
  2010年   326篇
  2009年   288篇
  2008年   441篇
  2007年   438篇
  2006年   406篇
  2005年   449篇
  2004年   435篇
  2003年   466篇
  2002年   414篇
  2001年   88篇
  2000年   96篇
  1999年   144篇
  1998年   142篇
  1997年   85篇
  1996年   93篇
  1995年   78篇
  1994年   86篇
  1993年   86篇
  1992年   99篇
  1991年   82篇
  1990年   80篇
  1989年   72篇
  1988年   65篇
  1987年   63篇
  1986年   57篇
  1985年   55篇
  1984年   75篇
  1983年   60篇
  1982年   75篇
  1981年   70篇
  1980年   86篇
  1979年   57篇
  1978年   60篇
  1977年   63篇
  1976年   52篇
  1975年   50篇
  1974年   47篇
  1973年   53篇
排序方式: 共有8487条查询结果,搜索用时 15 毫秒
51.
Medicinal plants identified by Miskito informants in Awastara, Nicaragua, were collected in the field. They are listed and botanically identified in this paper. Particularly interesting among the collection of 23 plant species are those used to cure snakebite and athlete’s foot, as observed in the field.  相似文献   
52.
Species composition, relative abundance, distribution and physical habitat associations of submerged aquatic macrophytes in the main channel border (MCB) habitat of Pool 5A, Upper Mississippi River (UMR) were investigated during the summers of 1980 and 1983. The submerged aquatic macrophytes in Pool .5A MCB were a small and stable component of the river ecosystem. Submerged plants occurred primarily in small, monospecific clumps. Clumps in close proximity to each other formed plant patches. Plant patches were stable in location and number between 1980 and 1983; 82.5% of the patches first observed in 1980 were present in 1983. Submerged macrophytes covered about 10–12 ha of the 201 ha MCB in Pool 5A. Submerged plants were most common in the lower two-thirds of the pool. Ten species of aquatic macrophytes occurred on rock channel-training structures and eleven occurred on non-rock substrates in the MCB. The most common submerged plants, in order of abundance, were Vallisneria americana Michx., Heteranthra dubia Jacq., Potamogeton pectinatus L., Ceratophyllum demersum L. and Potamogeton americanus C. & S.  相似文献   
53.
Magnesium and Manganese Content of Halophilic Bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
Magnesium and manganese contents were measured by atomic absorption spectrophotometry in bacteria of several halophilic levels, in Vibrio costicola, a moderately halophilic eubacterium growing in 1 M NaCl, Halobacterium volcanii, a halophilic archaebacterium growing in 2.5 M NaCl, Halobacterium cutirubrum, an extremely halophilic archaebacterium growing in 4 M NaCl, and Escherichia coli, a nonhalophilic eubacterium growing in 0.17 M NaCl. Magnesium and manganese contents varied with the growth phase, being maximal at the early log phase. Magnesium and manganese molalities in cell water were shown to increase with the halophilic character of the logarithmically growing bacteria, from 30 mmol of Mg per kg of cell water and 0.37 mmol of Mn per kg of cell water for E. coli to 102 mmol of Mg per kg of cell water and 1.6 mmol of Mn per kg of cell water for H. cutirubrum. The intracellular concentrations of manganese were determined independently by a radioactive tracer technique in V. costicola and H. volcanii. The values obtained by 54Mn loading represented about 70% of the values obtained by atomic absorption. The increase of magnesium and manganese contents associated with the halophilic character of the bacteria suggests that manganese and magnesium play a role in haloadaptation.  相似文献   
54.
The release of endogenous noradrenaline was measured in the cerebral cortex of the halothane-anesthetized rat by using the technique of brain dialysis coupled to a radioenzymatic assay. A thin dialysis tube was inserted transversally in the cerebral cortex (transcortical dialysis) and perfused with Ringer medium (2 microliter min-1). Under basal conditions, the cortical output of noradrenaline was stable over a period of at least 6 h and amounted to 8.7 pg/20 min (not corrected for recovery). Histological control of the perfused area revealed very little damage and normal morphology in the vicinity of the dialysis tube. Omission of calcium from the perfusion medium caused a marked drop in cortical noradrenaline output. Bilateral electrical stimulation (for 10 min) of the ascending noradrenergic pathways in the medial forebrain bundle caused a frequency-dependent increase in cortical noradrenaline output over the range 5-20 Hz. Stimulation at a higher frequency (50 Hz) resulted in a levelling off of the increase in cortical noradrenaline release. Systemic administration of the dopamine-beta-hydroxylase inhibitor bis-(4-methyl-1-homopiperazinylthiocarbonyl) disulfide (FLA 63) (25 mg/kg i.p.) markedly reduced, whereas injection of the monoamine oxidase inhibitor pargyline (75 mg/kg i.p.) resulted in a progressive increase in, cortical noradrenaline output. d-Amphetamine (2 mg/kg i.p.) provoked a sharp increase in cortical noradrenaline release (+450% over basal values within 40 min). Desmethylimipramine (10 mg/kg i.p.) produced a twofold increase of cortical noradrenaline release. Finally, idazoxan (20 mg/kg i.p.) and clonidine (0.3 mg/kg i.p.), respectively, increased and decreased the release of noradrenaline from the cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
55.
Molecular biology of archaebacteria.   总被引:19,自引:11,他引:8  
  相似文献   
56.
57.
58.
Four neutal fraction glycosphingolipids, designated components 4-7, were purified from the pupae of Calliphora vicina and isolated by the use of high performance liquid chromatography. Their chemical structures were determined to be: GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer; GalNAc(alpha 1-4)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer and Gal(alpha 1-3)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer; Gal(beta 1-3)GalNAc(alpha 1-4)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer; and GlcNAC(beta 1-3)Gal(beta 1-3)GalNAc(alpha 1-4)GalNAc(beta 1-4)GlcNAc(beta 1-3)Man(beta 1-4)Glc(beta 1-1)Cer. By the use of specific exoglycosidases, it was possible to assign anomeric configurations to all the sugar residues present. Analysis of the ceramide moiety by electron-impact mass spectrometry revealed the dominant fatty acid and sphingoid to be arachidic acid (C20:0) and tetradecasphing-4-enine, respectively.  相似文献   
59.
Summary Current procedures for isolating intestinal epithelial cell surface and intracellular membranes are based on the assumption that each organelle is marked by some unique constitutent. This assumption seemed inconsistent with the dynamic picture of subcellular organization emerging from studies of membrane turnover and recycling. Therefore, we have designed an alternative fractionation which is independent ofa priori marker assignments. We subjected mucosal homogenates to a sequence of separations based on sedimentation coefficient, equilibrium density, and partitioning in aqueous polymer twophase systems. The resulting distributions of protein and enzymatic markers define a total of 17 physically and biochemically distinct membrane populations. Among these are: basal-lateral membranes, with Na,K-ATPase enriched 21-fold; brush-border membranes, with alkaline phosphatase enriched as much as 38-fold; two populations apparently derived from the endoplasmic reticulum; a series of five populations believed to have been derived from the Golgi complex; and a series of five acid phosphatase-rich populations which we cannot identify unequivocally. Each of the five enzymatic markers we have followed is associated with a multiplicity of membrane populations. Basallateral, endoplasmic reticulum, and Golgi membranes contain alkaline phosphatase at the same specific activity as the initial homogenate. Similarly, Na,K-ATPase appears to be associated branes at specific activities two-to seven-fold that of the initial homogenate.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号