首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10391篇
  免费   1103篇
  国内免费   8篇
  2022年   77篇
  2021年   136篇
  2020年   87篇
  2019年   85篇
  2018年   130篇
  2017年   116篇
  2016年   210篇
  2015年   359篇
  2014年   383篇
  2013年   512篇
  2012年   604篇
  2011年   632篇
  2010年   411篇
  2009年   379篇
  2008年   558篇
  2007年   563篇
  2006年   511篇
  2005年   557篇
  2004年   563篇
  2003年   565篇
  2002年   511篇
  2001年   143篇
  2000年   143篇
  1999年   203篇
  1998年   177篇
  1997年   108篇
  1996年   115篇
  1995年   97篇
  1994年   110篇
  1993年   111篇
  1992年   133篇
  1991年   122篇
  1990年   108篇
  1989年   95篇
  1988年   100篇
  1987年   84篇
  1986年   74篇
  1985年   82篇
  1984年   99篇
  1983年   87篇
  1982年   92篇
  1981年   89篇
  1980年   103篇
  1979年   74篇
  1978年   95篇
  1977年   84篇
  1976年   79篇
  1975年   68篇
  1974年   79篇
  1973年   72篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Voltage-gated sodium channels control the upstroke of the action potential in excitable cells of nerve and muscle tissue, making them ideal targets for exogenous toxins that aim to squelch electrical excitability. One such toxin, tetrodotoxin (TTX), blocks sodium channels with nanomolar affinity only when an aromatic Phe or Tyr residue is present at a specific location in the external vestibule of the ion-conducting pore. To test whether TTX is attracted to Tyr401 of NaV1.4 through a cation-pi interaction, this aromatic residue was replaced with fluorinated derivatives of Phe using in vivo nonsense suppression. Consistent with a cation-pi interaction, increased fluorination of Phe401, which reduces the negative electrostatic potential on the aromatic face, caused a monotonic increase in the inhibitory constant for block. Trifluorination of the aromatic ring decreased TTX affinity by approximately 50-fold, a reduction similar to that caused by replacement with the comparably hydrophobic residue Leu. Furthermore, we show that an energetically equivalent cation-pi interaction underlies both use-dependent and tonic block by TTX. Our results are supported by high level ab initio quantum mechanical calculations applied to a model of TTX binding to benzene. Our analysis suggests that the aromatic side chain faces the permeation pathway where it orients TTX optimally and interacts with permeant ions. These results are the first of their kind to show the incorporation of unnatural amino acids into a voltage-gated sodium channel and demonstrate that a cation-pi interaction is responsible for the obligate nature of an aromatic at this position in TTX-sensitive sodium channels.  相似文献   
942.
Numerous studies have now shown that the amyloid beta-protein (Abeta), the principal component of cerebral plaques in Alzheimer disease, rapidly and potently inhibits certain forms of synaptic plasticity. The amyloid (or Abeta) hypothesis proposes that the continuous disruption of normal synaptic physiology by Abeta contributes to the development of Alzheimer disease. However, there is little consensus about how Abeta mediates this inhibition at the molecular level. Using mouse primary hippocampal neurons, we observed that a brief treatment with cell-derived, soluble, human Abeta disrupted the activation of three kinases (Erk/MAPK, CaMKII, and the phosphatidylinositol 3-kinase-activated protein Akt/protein kinase B) that are required for long term potentiation, whereas two other kinases (protein kinase A and protein kinase C) were stimulated normally. An antagonist of the insulin receptor family of tyrosine kinases was found to mimic the pattern of Abeta-mediated kinase inhibition. We then found that soluble Abeta binds to the insulin receptor and interferes with its insulin-induced autophosphorylation. Taken together, these data demonstrate that physiologically relevant levels of naturally secreted Abeta interfere with insulin receptor function in hippocampal neurons and prevent the rapid activation of specific kinases required for long term potentiation.  相似文献   
943.
Cell-cell interactions between ubiquitously expressed integrin-associated protein (CD47) and its counterreceptor signal regulatory protein (SIRPalpha) on phagocytes regulate a wide range of adhesive signaling processes, including the inhibition of phagocytosis as documented in mice. We show that CD47-SIRPalpha binding interactions are different between mice and humans, and we exploit phylogenetic divergence to identify the species-specific binding locus on the immunoglobulin domain of human CD47. All of the studies are conducted in the physiological context of membrane protein display on Chinese hamster ovary (CHO) cells. Novel quantitative flow cytometry analyses with CD47-green fluorescent protein and soluble human SIRPalpha as a probe show that neither human CD47 nor SIRPalpha requires glycosylation for interaction. Human CD47-expressing CHO cells spread rapidly on SIRPalpha-coated glass surfaces, correlating well with the spreading of primary human T cells. In contrast, CHO cells expressing mouse CD47 spread minimally and show equally weak binding to soluble human SIRPalpha. Further phylogenetic analyses and multisite substitutions of the CD47 Ig domain show that human to cow mutation of a cluster of seven residues on adjacent strands near the middle of the domain decreases the association constant for human SIRPalpha to about one-third that of human CD47. Direct tests of cell-cell adhesion between human monocytes and CD47-displaying CHO cells affirm the species specificity as well as the importance of the newly identified binding locus in cell-cell interactions.  相似文献   
944.
945.
The objective of this study was to test the hypothesis that the human lumbosacral joint behaves differently from L1-L5 joints and provides primary moment-rotation responses under pure moment flexion and extension and left and right lateral bending on a level-by-level basis. In addition, range of motion (ROM) and stiffness data were extracted from the moment-rotation responses. Ten T12-S1 column specimens with ages ranging from 27 to 68 years (mean: 50.6+/-13.2) were tested at a load level of 4.0 N m. Nonlinear flexion and extension and left and right lateral bending moment-rotation responses at each spinal level are reported in the form of a logarithmic function. The mean ROM was the greatest at the L5-S1 level under flexion (7.37+/-3.69 degrees) and extension (4.62+/-2.56 degrees) and at the L3-L4 level under lateral bending (4.04+/-1.11 degrees). The mean ROM was the least at the L1-L2 level under flexion (2.42+/-0.90 degrees), L2-L3 level under extension (1.58+/-0.63 degrees), and L1-L2 level under lateral bending (2.50+/-0.75 degrees). The present study proved the hypothesis that L5-S1 motions are significantly greater than L1-L5 motions under flexion and extension loadings, but the hypothesis was found to be untrue under the lateral bending mode. These experimental data are useful in the improved validation of FE models, which will increase the confidence of stress analysis and other modeling applications.  相似文献   
946.
The goal of this study was to investigate the role of reflex and reflex time delay in muscle recruitment and spinal stability. A dynamic biomechanical model of the musculoskeletal spine with reflex response was implemented to investigate the relationship between reflex gain, co-contraction, and stability in the spine. The first aim of the study was to investigate how reflex gain affected co-contraction predicted in the model. It was found that reflexes allowed the model to stabilize with less antagonistic co-contraction and hence lower metabolic power than when limited to intrinsic stiffness alone. In fact, without reflexes there was no feasible recruitment pattern that could maintain spinal stability when the torso was loaded with 200N external load. Reflex delay is manifest in the paraspinal muscles and represents the time from a perturbation to the onset of reflex activation. The second aim of the study was to investigate the relationship between reflex delay and the maximum tolerable reflex gain. The maximum acceptable upper bound on reflex gain decreased logarithmically with reflex delay. Thus, increased reflex delay and reduced reflex gain requires greater antagonistic co-contraction to maintain spinal stability. Results of this study may help understanding of how patients with retarded reflex delay utilize reflex for stability, and may explain why some patients preferentially recruit more intrinsic stiffness than healthy subjects.  相似文献   
947.
Macromolecular complexes exhibit reduced diffusion in biological membranes; however, the physiological consequences of this characteristic of plasma membrane domain organization remain elusive. We report that competition between the galectin lattice and oligomerized caveolin-1 microdomains for epidermal growth factor (EGF) receptor (EGFR) recruitment regulates EGFR signaling in tumor cells. In mammary tumor cells deficient for Golgi beta1,6N-acetylglucosaminyltransferase V (Mgat5), a reduction in EGFR binding to the galectin lattice allows an increased association with stable caveolin-1 cell surface microdomains that suppresses EGFR signaling. Depletion of caveolin-1 enhances EGFR diffusion, responsiveness to EGF, and relieves Mgat5 deficiency-imposed restrictions on tumor cell growth. In Mgat5(+/+) tumor cells, EGFR association with the galectin lattice reduces first-order EGFR diffusion rates and promotes receptor interaction with the actin cytoskeleton. Importantly, EGFR association with the lattice opposes sequestration by caveolin-1, overriding its negative regulation of EGFR diffusion and signaling. Therefore, caveolin-1 is a conditional tumor suppressor whose loss is advantageous when beta1,6GlcNAc-branched N-glycans are below a threshold for optimal galectin lattice formation.  相似文献   
948.
949.
To date, only the H1 MAPT haplotype has been consistently associated with risk of developing the neurodegenerative disease progressive supranuclear palsy (PSP). We hypothesized that additional genetic loci may be involved in conferring risk of PSP that could be identified through a pooling-based genomewide association study of >500,000 SNPs. Candidate SNPs with large differences in allelic frequency were identified by ranking all SNPs by their probe-intensity difference between cohorts. The MAPT H1 haplotype was strongly detected by this methodology, as was a second major locus on chromosome 11p12-p11 that showed evidence of association at allelic (P<.001), genotypic (P<.001), and haplotypic (P<.001) levels and was narrowed to a single haplotype block containing the DNA damage-binding protein 2 (DDB2) and lysosomal acid phosphatase 2 (ACP2) genes. Since DNA damage and lysosomal dysfunction have been implicated in aging and neurodegenerative processes, both genes are viable candidates for conferring risk of disease.  相似文献   
950.
Amphibiobeania epiphylla is a new, monotypic taxon of Beaniidae (Cheilostomata) from Darwin, Northern Territory. It is unique among the 6,000 living species of Bryozoa in that it encrusts mainly living tree leaves (chiefly the mangrove Rhizophora stylosa). The consequence of living in such a specialized habitat is that colonies are emergent (subaerial) for a significant part of the tidal cycle-around 12 of every 24 hours during spring tides and for several days during neap tides. Desiccation is prevented or minimized by the high humidity of the habitat and a cohesive coating of silt covering the colony. Zooids are weakly calcified and lie alternately on their left and right sides in a lineal series, with opercula displaced to the outer corner of the distal zooidal rim. Organisms associated with A. epiphylla include a colony-damaging ceratopogonid (Diptera) larva and a tarsonemid mite that may use dead zooidal interiors, beneath the silt crust, for shelter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号