首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   20篇
  2023年   4篇
  2022年   9篇
  2021年   23篇
  2020年   10篇
  2019年   18篇
  2018年   22篇
  2017年   10篇
  2016年   26篇
  2015年   23篇
  2014年   21篇
  2013年   34篇
  2012年   47篇
  2011年   47篇
  2010年   24篇
  2009年   26篇
  2008年   31篇
  2007年   23篇
  2006年   21篇
  2005年   23篇
  2004年   23篇
  2003年   15篇
  2002年   12篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
排序方式: 共有511条查询结果,搜索用时 46 毫秒
121.
Testicular cells from adult hypophysectomized rats were cultured for 10 or 12 days, and the effect of treatment with hCG (10 ng/ml) on testosterone and progesterone production and the activity of the Leydig cell enzyme, 3 beta-hydroxysteroid dehydrogenase, were studied. Regardless of hormone treatment, on 4th day in culture a decline in the steroidogenic activity of cultured cells could be observed. Treatment with hCG resulted in stimulation of steroidogenesis on days 6 to 10 in culture, as measured by testosterone and progesterone production. Hormone treatment stimulated or inhibited the enzyme activity depending on the presence or absence in the culture medium of 10(-6) M spironolactone, an inhibitor of 17 alpha-hydroxylase, or an anti-androgen, cyproterone acetate.  相似文献   
122.
123.
There is accumulating evidence that the proteins encoded by the genes associated with a common disorder interact with each other, participate in similar pathways and share GO terms. It has been anticipated that the functional modules in a disease related functional linkage network are informative to reveal significant metabolic processes and disease’s associations with other complex disorders. In the current study, Type 2 diabetes associated functional linkage network (T2DFN) containing 2770 proteins and 15041 linkages was constructed. The functional modules in this network were scored and evaluated in terms of shared pathways, co-localization, co-expression and associations with similar diseases. The assembly of top scoring overlapping members in the functional modules revealed that, along with the well known biological pathways, circadian rhythm, diverse actions of nuclear receptors in steroid and retinoic acid metabolisms have significant occurrence in the pathophysiology of the disease. The disease’s association with other metabolic and neuromuscular disorders was established through shared proteins. Nuclear receptor NRIP1 has a pivotal role in lipid and carbohydrate metabolism, indicating the need to investigate subsequent effects of NRIP1 on Type 2 diabetes. Our study also revealed that CREB binding protein (CREBBP) and cardiotrophin-1 (CTF1) have suggestive roles in linking Type 2 diabetes and neuromuscular diseases.  相似文献   
124.
125.
126.
MOTIVATION: The discovery of solid-binding peptide sequences is accelerating along with their practical applications in biotechnology and materials sciences. A better understanding of the relationships between the peptide sequences and their binding affinities or specificities will enable further design of novel peptides with selected properties of interest both in engineering and medicine. RESULTS: A bioinformatics approach was developed to classify peptides selected by in vivo techniques according to their inorganic solid-binding properties. Our approach performs all-against-all comparisons of experimentally selected peptides with short amino acid sequences that were categorized for their binding affinity and scores the alignments using sequence similarity scoring matrices. We generated novel scoring matrices that optimize the similarities within the strong-binding peptide sequences and the differences between the strong- and weak-binding peptide sequences. Using the scoring matrices thus generated, a given peptide is classified based on the sequence similarity to a set of experimentally selected peptides. We demonstrate the new approach by classifying experimentally characterized quartz-binding peptides and computationally designing new sequences with specific affinities. Experimental verifications of binding of these computationally designed peptides confirm our predictions with high accuracy. We further show that our approach is a general one and can be used to design new sequences that bind to a given inorganic solid with predictable and enhanced affinity.  相似文献   
127.
128.
The p15 fusion-associated small transmembrane (FAST) protein is a nonstructural viral protein that induces cell-cell fusion and syncytium formation. The exceptionally small, myristoylated N-terminal ectodomain of p15 lacks any of the defining features of a typical viral fusion protein. NMR and CD spectroscopy indicate this small fusion module comprises a left-handed polyproline type II (PPII) helix flanked by small, unstructured N and C termini. Individual prolines in the 6-residue proline-rich motif are highly tolerant of alanine substitutions, but multiple substitutions that disrupt the PPII helix eliminate cell-cell fusion activity. A synthetic p15 ectodomain peptide induces lipid mixing between liposomes, but with unusual kinetics that involve a long lag phase before the onset of rapid lipid mixing, and the length of the lag phase correlates with the kinetics of peptide-induced liposome aggregation. Lipid mixing, liposome aggregation, and stable peptide-membrane interactions are all dependent on both the N-terminal myristate and the presence of the PPII helix. We present a model for the mechanism of action of this novel viral fusion peptide, whereby the N-terminal myristate mediates initial, reversible peptide-membrane binding that is stabilized by subsequent amino acid-membrane interactions. These interactions induce a biphasic membrane fusion reaction, with peptide-induced liposome aggregation representing a distinct, rate-limiting event that precedes membrane merger. Although the prolines in the proline-rich motif do not directly interact with membranes, the PPII helix may function to force solvent exposure of hydrophobic amino acid side chains in the regions flanking the helix to promote membrane binding, apposition, and fusion.  相似文献   
129.
Tryptophan as a circulating precursor of serotonin (5-HT) may suppress food intake and body weight. Tryptophan administration can enhance the generation of reactive oxygen species (ROS) by inducing oxidative pathway in vivo and in vitro. We have examined the effect of repeated tryptophan administration on food consumption, body weight, brain lipid peroxidation and 5-HT immunoreactivity. Tryptophan was given at the dose of 100 mg/kg/24 hr in 0.2 ml saline solution i.p. for 7 days to mice. Control mice received 0.9% NaCL solution at the same manner and volume. Body weights were recorded at the beginning and end of the experiments. Thiobarbituric acid reactive substance (TBARS), the last product of lipid peroxidation, was measured spectrophotometrically. Brain 5-HT levels were determined by the immunohistochemical method. Our findings indicate that the tryptophan suppresses food intake significantly in mice. Body weight decreased and brain TBARS levels increased significantly by repeated tryptophan treatment. Immunohistochemical detection showed that 5-HT levels increased by tryptophan administration. There is a link between increased 5-HT level and oxidative stress by tryptophan administration on brain tissue. Tryptophan at repeated doses should be exercised carefully in clinical practice.  相似文献   
130.
We examined the role of the nitric oxide (NO) pathway on ischemia-reperfusion injury via the use of isolated perfused guinea pig lungs. We administered both L-Arginine and N-nitro-L-arginine methyl ester (L-NAME) to the lungs in or after 3 h of ischemia. We observed pulmonary artery pressures as well as tissue and perfusate malondialdehyde (MDA) and glutathione (GSH) levels. We observed that L-NAME significantly increased both tissue and perfusate GSH levels and pulmonary artery pressures, but it decreased both tissue and perfusate MDA levels. On the other hand, L-arginine significantly decreased pulmonary artery pressure and both tissue and perfusate glutathione levels, but it increased both tissue and perfusate MDA levels. Electron microscopic evaluation supported our findings by indicating the preservation of lamellar bodies of type II pneumocytes. We concluded that L-NAME administration during reperfusion improves lung recovery from ischemic injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号