首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4770篇
  免费   379篇
  国内免费   1篇
  2023年   15篇
  2022年   39篇
  2021年   77篇
  2020年   40篇
  2019年   60篇
  2018年   70篇
  2017年   70篇
  2016年   121篇
  2015年   172篇
  2014年   227篇
  2013年   290篇
  2012年   333篇
  2011年   314篇
  2010年   246篇
  2009年   196篇
  2008年   273篇
  2007年   272篇
  2006年   231篇
  2005年   238篇
  2004年   250篇
  2003年   254篇
  2002年   221篇
  2001年   77篇
  2000年   59篇
  1999年   66篇
  1998年   84篇
  1997年   48篇
  1996年   41篇
  1995年   37篇
  1994年   32篇
  1993年   38篇
  1992年   60篇
  1991年   57篇
  1990年   36篇
  1989年   40篇
  1988年   35篇
  1987年   21篇
  1986年   21篇
  1985年   23篇
  1984年   24篇
  1983年   20篇
  1982年   23篇
  1981年   19篇
  1980年   12篇
  1978年   13篇
  1977年   14篇
  1974年   20篇
  1973年   17篇
  1972年   16篇
  1970年   16篇
排序方式: 共有5150条查询结果,搜索用时 15 毫秒
991.
992.
993.
Biomechanics and Modeling in Mechanobiology - Considering the major role of confined cell migration in biological processes and diseases, such as embryogenesis or metastatic cancer, it has become...  相似文献   
994.
Microtubules are dynamic structures that present the peculiar characteristic to be ice-cold labile in vitro. In vivo, microtubules are protected from ice-cold induced depolymerization by the widely expressed MAP6/STOP family of proteins. However, the mechanism by which MAP6 stabilizes microtubules at 4 °C has not been identified. Moreover, the microtubule cold sensitivity and therefore the needs for microtubule stabilization in the wide range of temperatures between 4 and 37 °C are unknown. This is of importance as body temperatures of animals can drop during hibernation or torpor covering a large range of temperatures. Here, we show that in the absence of MAP6, microtubules in cells below 20 °C rapidly depolymerize in a temperature-dependent manner whereas they are stabilized in the presence of MAP6. We further show that in cells, MAP6-F binding to and stabilization of microtubules is temperature- dependent and very dynamic, suggesting a direct effect of the temperature on the formation of microtubule/MAP6 complex. We also demonstrate using purified proteins that MAP6-F binds directly to microtubules through its Mc domain. This binding is temperature-dependent and coincides with progressive conformational changes of the Mc domain as revealed by circular dichroism. Thus, MAP6 might serve as a temperature sensor adapting its conformation according to the temperature to maintain the cellular microtubule network in organisms exposed to temperature decrease.  相似文献   
995.
Ensembling combines the predictions made by individual component base models with the goal of achieving a predictive accuracy that is better than that of any one of the constituent member models. Diversity among the base models in terms of predictions is a crucial criterion in ensembling. However, there are practical instances when the available base models produce highly correlated predictions, because they may have been developed within the same research group or may have been built from the same underlying algorithm. We investigated, via a case study on Fusarium head blight (FHB) on wheat in the U.S., whether ensembles of simple yet highly correlated models for predicting the risk of FHB epidemics, all generated from logistic regression, provided any benefit to predictive performance, despite relatively low levels of base model diversity. Three ensembling methods were explored: soft voting, weighted averaging of smaller subsets of the base models, and penalized regression as a stacking algorithm. Soft voting and weighted model averages were generally better at classification than the base models, though not universally so. The performances of stacked regressions were superior to those of the other two ensembling methods we analyzed in this study. Ensembling simple yet correlated models is computationally feasible and is therefore worth pursuing for models of epidemic risk.  相似文献   
996.
Recent papers have brought evidence against the hypothesis that the fucosyl branching of primary wall xyloglucans (Xg) are responsible for their higher capacity of binding to cellulose. Reinforcement of this questioning has been obtained in this work where we show that the binding capacity was improved when the molecular weight (MW) of the Xg polymers is decreased by enzymatic hydrolysis. Moreover, the enthalpy changes associated with the adsorption process between Xg and cellulose is similar for Xgs with similar MW (but differing in the fine structure such as the presence/absence of fucose). On the basis of these results, we suggest that the fine structure and MW of Xg determines the energy and amount of binding to cellulose, respectively. Thus, the occurrence of different fine structural domains of Xg (e.g. the presence of fucose and the distribution of galactoses) might have several different functions in the wall. Besides the structural function in primary wall, these results might have impact on the packing features of storage Xg in seed cotyledons, since the MW and absence of fucose could also be associated with the self-association capacity.  相似文献   
997.
998.
999.
This article describes the preparation of starch particles, by spray drying, for possible application to a dry powder coating process. Dry powder coating consists of spraying a fine powder and a plasticizer on particles. The efficiency of the coating is linked to the powder morphological and dimensional characteristics. Different experimental parameters of the spray-drying process were analyzed, including type of solvent, starch concentration, rate of polymer feeding, pressure of the atomizing air, drying air flow, and temperature of drying air. An optimization and screening of the experimental parameters by a design of the experiment (DOE) approach have been done. Finally, the produced spray-dried starch particles were conveniently tested in a dry coating process, in comparison to the commercial initial starch. The obtained results, in terms of coating efficiency, demonstrated that the spray-dried particles led to a sharp increase of coating efficiency value.  相似文献   
1000.
Metamorphosis in the anuran frog, Xenopus laevis, involves profound structural and functional transformations in most of the organism's physiological systems as it encounters a complete alteration in body plan, habitat, mode of respiration and diet. The metamorphic process also involves a transition in locomotory strategy from axial-based undulatory swimming using alternating contractions of left and right trunk muscles, to bilaterally-synchronous kicking of the newly developed hindlimbs in the young adult. At critical stages during this behavioural switch, functional larval and adult locomotor systems co-exist in the same animal, implying a progressive and dynamic reconfiguration of underlying spinal circuitry and neuronal properties as limbs are added and the tail regresses. To elucidate the neurobiological basis of this developmental process, we use electrophysiological, pharmacological and neuroanatomical approaches to study isolated in vitro brain stem/spinal cord preparations at different metamorphic stages. Our data show that the emergence of secondary limb motor circuitry, as it supersedes the primary larval network, spans a developmental period when limb circuitry is present but not functional, functional but co-opted into the axial network, functionally separable from the axial network, and ultimately alone after axial circuitry disappears with tail resorption. Furthermore, recent experiments on spontaneously active in vitro preparations from intermediate metamorphic stage animals have revealed that the biogenic amines serotonin (5-HT) and noradrenaline (NA) exert short-term adaptive control over circuit activity and inter-network coordination: whereas bath-applied 5-HT couples axial and appendicular rhythms into a single unified pattern, NA has an opposite decoupling effect. Moreover, the progressive and region-specific appearance of spinal cord neurons that contain another neuromodulator, nitric oxide (NO), suggests it plays a role in the maturation of limb locomotor circuitry. In summary, during Xenopus metamorphosis the network responsible for limb movements is progressively segregated from an axial precursor, and supra- and intra-spinal modulatory inputs are likely to play crucial roles in both its functional flexibility and maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号