首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4499篇
  免费   356篇
  国内免费   2篇
  4857篇
  2023年   16篇
  2022年   39篇
  2021年   71篇
  2020年   39篇
  2019年   55篇
  2018年   67篇
  2017年   68篇
  2016年   118篇
  2015年   164篇
  2014年   215篇
  2013年   272篇
  2012年   305篇
  2011年   295篇
  2010年   238篇
  2009年   185篇
  2008年   265篇
  2007年   265篇
  2006年   219篇
  2005年   227篇
  2004年   243篇
  2003年   246篇
  2002年   217篇
  2001年   72篇
  2000年   52篇
  1999年   60篇
  1998年   79篇
  1997年   41篇
  1996年   34篇
  1995年   36篇
  1994年   30篇
  1993年   35篇
  1992年   52篇
  1991年   50篇
  1990年   34篇
  1989年   35篇
  1988年   32篇
  1987年   21篇
  1986年   17篇
  1985年   20篇
  1984年   22篇
  1983年   15篇
  1982年   22篇
  1981年   18篇
  1980年   11篇
  1978年   12篇
  1977年   13篇
  1974年   16篇
  1973年   11篇
  1972年   13篇
  1970年   11篇
排序方式: 共有4857条查询结果,搜索用时 15 毫秒
101.
102.
Yams (Dioscorea spp.) consist of approximately 600 species. Presently, these species are threatened by genetic erosion due to many factors such as pest attacks and farming practices. In parallel, complex taxonomic boundaries in this genus makes it more challenging to properly address the genetic diversity of yam and manage its germplasm. As a first step toward evaluating and preserving the genetic diversity yam species, we use a phylogenetic diversity (PD) approach that has the advantage to investigate phylogenetic relationships and test hypotheses of species monophyly while alleviating to the problem of ploidy variation within and among species. The Bayesian phylogenetic analysis of 62 accessions from 7 species from three regions of Cameroon showed that most Dioscorea sections were monophyletic, but species within sections were generally non-monophyletic. The wild species D. praehensilis and cultivated D. cayenensis were the species with the highest PD. At the opposite, D. esculenta has a low PD and future studies should focus on this species to properly address its conservation status. We also show that wild species show a stronger genetic structure than cultivated species, which potentially reflects the management of the yam germplasm by farmers. These findings show that phylogenetic diversity is a promising approach for an initial investigation of genetic diversity in a crop consisting of closely related species.  相似文献   
103.
Desulfovibrio species are representatives of microorganisms at the boundary between anaerobic and aerobic lifestyles, since they contain the enzymatic systems required for both sulfate and oxygen reduction. However, the latter has been shown to be solely a protective mechanism. By implementing the oxygen-driven experimental evolution of Desulfovibrio vulgaris Hildenborough, we have obtained strains that have evolved to grow with energy derived from oxidative phosphorylation linked to oxygen reduction. We show that a few mutations are sufficient for the emergence of this phenotype and reveal two routes of evolution primarily involving either inactivation or overexpression of the gene encoding heterodisulfide reductase. We propose that the oxygen respiration for energy conservation that sustains the growth of the O2-evolved strains is associated with a rearrangement of metabolite fluxes, especially NAD+/NADH, leading to an optimized O2 reduction. These evolved strains are the first sulfate-reducing bacteria that exhibit a demonstrated oxygen respiratory process that enables growth.  相似文献   
104.
105.
BACKGROUND: Cytokinesis in bacteria is mediated by a cytokinetic ring, termed the Z ring, which forms a scaffold for recruitment of other cell-division proteins. The Z ring is composed of FtsZ filaments, but their organization in the Z ring is poorly understood. In Escherichia coli, the Min system contributes to the spatial regulation of cytokinesis by preventing the assembly of the Z ring away from midcell. The effector of the Min system, MinC, inhibits Z ring assembly by a mechanism that is not clear. RESULTS: Here, we report that MinC controls the scaffolding function of FtsZ by antagonizing the mechanical integrity of FtsZ structures. Specifically, MinC antagonizes the ability of FtsZ filaments to be in a solid-like gel state. MinC is a modular protein whose two domains (MinC(C) and MinC(N)) synergize to inhibit FtsZ function. MinC(C) interacts directly with FtsZ polymers to target MinC to Z rings. MinC(C) also prevents lateral interactions between FtsZ filaments, an activity that seems to be unique among cytoskeletal proteins. Because MinC(C) is inhibitory in vivo, it suggests that lateral interactions between FtsZ filaments are important for the structural integrity of the Z ring. MinC(N) contributes to MinC activity by weakening the longitudinal bonds between FtsZ molecules in a filament leading to a loss of polymer rigidity and consequent polymer shortening. On the basis of our results, we develop the first computational model of the Z ring and study the effects of MinC. CONCLUSIONS: Control over the scaffolding activity of FtsZ probably represents a universal regulatory mechanism of bacterial cytokinesis.  相似文献   
106.
Primary cell lines were established from cultures of tail and toe clips of five species of Australian dragon lizards: Tympanocryptis pinguicolla, Tympanocryptis sp., Ctenophorus fordi, Amphibolurus norrisi and Pogona vitticeps. The start of exponential cell growth ranged from 1 to 5 weeks. Cultures from all specimens had fibroblastic morphology. Cell lines were propagated continuously up to ten passages, cryopreserved and recovered successfully. We found no reduction in cell viability after short term (<6 months) storage at −80 °C. Mitotic metaphase chromosomes were harvested from these cell lines and used in differential staining, banding and fluorescent in situ hybridisation. Cell lines maintained normal diploidy in all species. This study reports a simple non-invasive method for establishing primary cell lines from Australian dragon lizards without sacrifice. The method is likely to be applicable to a range of species. Such cell lines provide a virtually unlimited source of material for cytogenetic, evolutionary and genomic studies.  相似文献   
107.
108.

In this article we consider diffusion processes modeling the dynamics of multiple allelic proportions (with fixed and varying population size). We are interested in the way alleles extinctions and fixations occur. We first prove that for the Wright–Fisher diffusion process with selection, alleles get extinct successively (and not simultaneously), until the fixation of one last allele. Then we introduce a very general model with selection, competition and Mendelian reproduction, derived from the rescaling of a discrete individual-based dynamics. This multi-dimensional diffusion process describes the dynamics of the population size as well as the proportion of each type in the population. We prove first that alleles extinctions occur successively and second that depending on population size dynamics near extinction, fixation can occur either before extinction almost surely, or not. The proofs of these different results rely on stochastic time changes, integrability of one-dimensional diffusion processes paths and multi-dimensional Girsanov’s tranform.

  相似文献   
109.
Rioux G  Babin C  Majeau N  Leclerc D 《PloS one》2012,7(2):e31925
Papaya mosaic virus has been shown to be an efficient adjuvant and vaccine platform in the design and improvement of innovative flu vaccines. So far, all fusions based on the PapMV platform have been located at the C-terminus of the PapMV coat protein. Considering that some epitopes might interfere with the self-assembly of PapMV CP when fused at the C-terminus, we evaluated other possible sites of fusion using the influenza HA11 peptide antigen. Two out of the six new fusion sites tested led to the production of recombinant proteins capable of self assembly into PapMV nanoparticles; the two functional sites are located after amino acids 12 and 187. Immunoprecipitation of each of the successful fusions demonstrated that the HA11 epitope was located at the surface of the nanoparticles. The stability and immunogenicity of the PapMV-HA11 nanoparticles were evaluated, and we could show that there is a direct correlation between the stability of the nanoparticles at 37°C (mammalian body temperature) and the ability of the nanoparticles to trigger an efficient immune response directed towards the HA11 epitope. This strong correlation between nanoparticle stability and immunogenicity in animals suggests that the stability of any nanoparticle harbouring the fusion of a new peptide should be an important criterion in the design of a new vaccine.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号