首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16998篇
  免费   1314篇
  国内免费   1212篇
  19524篇
  2024年   41篇
  2023年   214篇
  2022年   514篇
  2021年   880篇
  2020年   596篇
  2019年   715篇
  2018年   683篇
  2017年   501篇
  2016年   726篇
  2015年   1061篇
  2014年   1289篇
  2013年   1298篇
  2012年   1506篇
  2011年   1366篇
  2010年   866篇
  2009年   741篇
  2008年   884篇
  2007年   785篇
  2006年   650篇
  2005年   551篇
  2004年   454篇
  2003年   421篇
  2002年   319篇
  2001年   313篇
  2000年   282篇
  1999年   290篇
  1998年   197篇
  1997年   175篇
  1996年   151篇
  1995年   123篇
  1994年   140篇
  1993年   97篇
  1992年   120篇
  1991年   106篇
  1990年   89篇
  1989年   82篇
  1988年   54篇
  1987年   63篇
  1986年   37篇
  1985年   48篇
  1984年   22篇
  1983年   22篇
  1982年   13篇
  1981年   7篇
  1980年   8篇
  1979年   9篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
121.
Recent studies have suggested that growth factors and hormones play important roles in cell prolif-eration and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage em-bryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expres-sion, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapa-mycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These re-sults suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.  相似文献   
122.
Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.  相似文献   
123.
Wang F  Deng XW 《Cell research》2011,21(9):1286-1294
The ubiquitin-proteasome system (UPS) in plants, like in other eukaryotes, targets numerous intracellular regulators and thus modulates almost every aspect of growth and development. The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome, which represents the major selective protein degradation pathway conserved among eukaryotes. In this review, we will discuss the molecular composition, regulation and function of plant UPS, with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth.  相似文献   
124.
Interleukin‐35 (IL‐35), a member of the IL‐12 family, functions as a new anti‐inflammatory factor involved in arthritis, psoriasis, inflammatory bowel disease (IBD) and other immune diseases. Although IL‐35 can significantly prevent the development of inflammation in many diseases, there have been no early studies accounting for the role of IL‐35 recombinant protein in IBD and psoriasis. In this study, we assessed the therapeutic potential of IL‐35 recombinant protein in three well‐known mouse models: the dextransulfate sodium (DSS)‐induced colitis mouse model, the keratin14 (K14)‐vascular endothelial growth factor A (VEGF‐A)‐transgenic (Tg) psoriasis mouse model and the imiquimod (IMQ)‐induced psoriasis mouse model. Our results indicated that IL‐35 recombinant protein can slow down the pathologic process in DSS‐induced acute colitis mouse model by decreasing the infiltrations of macrophages, CD4+T and CD8+T cells and by promoting the infiltration of Treg cells. Further analysis demonstrated that IL‐35 recombinant protein may regulate inflammation through promoting the secretion of IL‐10 and inhibiting the expression of pro‐inflammatory cytokines such as IL‐6, TNF‐α and IL‐17 in acute colitis model. In addition, lower dose of IL‐35 recombinant protein could achieve long‐term treatment effects as TNF‐α monoclonal antibody did in the psoriasis mouse. In summary, the remarkable therapeutic effects of IL‐35 recombinant protein in acute colitis and psoriasis mouse models indicated that IL‐35 recombinant protein had a variety of anti‐inflammatory effects and was expected to become an effective candidate drug for the treatment of inflammatory diseases.  相似文献   
125.
Due to its fundamental role in shaping host selection behavior, we have analyzed the chemosensory repertoire of Chrysomela lapponica. This specialized leaf beetle evolved distinct populations which shifted from the ancestral host plant, willow (Salix sp., Salicaceae), to birch (Betula rotundifolia, Betulaceae). We identified 114 chemosensory candidate genes in adult C. lapponica: 41 olfactory receptors (ORs), eight gustatory receptors, 17 ionotropic receptors, four sensory neuron membrane proteins, 32 odorant binding proteins (OBPs), and 12 chemosensory proteins (CSP) by RNA‐seq. Differential expression analyses in the antennae revealed significant upregulation of one minus‐C OBP (ClapOBP27) and one CSP (ClapCSP12) in the willow feeders. In contrast, one OR (ClapOR17), four minus‐C OBPs (ClapOBP02, 07, 13, 20), and one plus‐C OBP (ClapOBP32) were significantly upregulated in birch feeders. The differential expression pattern in the legs was more complex. To narrow down putative ligands acting as cues for host discrimination, the relative abundance and diversity of volatiles of the two host plant species were analyzed. In addition to salicylaldehyde (willow‐specific), both plant species differed mainly in their emission rate of terpenoids such as (E,E)‐α‐farnesene (high in willow) or 4,8‐dimethylnona‐1,3,7‐triene (high in birch). Qualitatively, the volatiles were similar between willow and birch leaves constituting an “olfactory bridge” for the beetles. Subsequent structural modeling of the three most differentially expressed OBPs and docking studies using 22 host volatiles indicated that ligands bind with varying affinity. We suggest that the evolution of particularly minus‐C OBPs and ORs in C. lapponica facilitated its host plant shift via chemosensation of the phytochemicals from birch as novel host plant.  相似文献   
126.
127.
Lee I  Deng W  Yang L  Wang C  Bai C 《Biophysical chemistry》1997,67(1-3):159-165
The conformational transitions (helix-coil transitions) of three hairpin triple helices, models 5'-(A-G)(3) + 5'-(T-C)(3)-T(4)-((br)C-T)(3) [CY], 5'-(A-G)(3) + 5'-(T-(br)C)(3)-T(4)-(C-T)(3) [YC] and 5'-(A-G)(3) + 5'-(T-(br)C)(3)-T(4)-((br)C-T)(3) [YY], are characterized in this work by UV spectroscopy. Melting of these triplexes is biphasic, and the profiles are used to obtain the thermodynamic parameters. The thermodynamic properties of the hairpin triplex are T(m) = 19.45 degrees C and DeltaH(vH) = 293.12 kJ mol(-1) for CY, T(m) = 22.85 degrees C and DeltaH(vH) = 256.63 kJ mol(-1) for YC and T(m) = 28.47 degrees C and DeltaH(vH) = 234.68 kJ mol(-1) for YY at pH 4.4. Those of the duplex are T(m) = 30.50 degrees C and DeltaH(vH) = 427.09 kJ mol(-1) for CY, T(m) = 32.96 degrees C and DeltaH(vH) = 374.47 kJ mol(-1) for YC and T(m) = 33.24 degrees C and DeltaH(vH) = 329.67 kJ mol(-1) for YY at pH 4.4. The distinct transitions of triplex to duplex and duplex to single strands are analyzed using the nearest-neighbor Ising model. Electrostatic effects on each conformation are also analyzed.  相似文献   
128.
重组大肠杆菌表达铜绿假单胞菌溶血性磷脂酶C   总被引:1,自引:0,他引:1  
[目的]构建产溶血性磷脂酶C (Hemolytic Phospholipase C,PLCH)的重组大肠杆菌(Escherich coli菌株,并初步优化其发酵条件.[方法]首先利用卵黄硼砂平板分离法筛选到一株产磷脂酶C(Phospholipase C,PLC)活性较高的菌株,命名为铜绿假单胞菌(Pseudomonas aeruginosa)41;进一步以P.aeruginosa 41基因组DNA为模板设计引物,PCR扩增获得溶血性磷脂酶C(PLCH)基因,构建重组大肠杆菌表达质粒并转化大肠杆菌E.coli BL21 (DE3);筛选转化子并检测PLC活性和溶血能力,并初步优化其发酵条件.[结果]成功构建了重组大肠杆菌E.coli BL21(DE3) /pET28a-plcH;在硼砂卵黄平板上对重组菌进行PLC活性测定,显示重组菌有明显的磷脂酶C活性;在哥伦比亚血琼脂平板上对重组菌进行溶血性试验,表明PLCH具有较强的溶血活性;初步优化摇瓶发酵条件为:5%转接量,37℃、200 r/min下培养4h添加IPTG至终浓度为0.9 mmol/L,转为25℃、150 r/min诱导培养14 h;优化后重组菌的酶活可达到722.89±0.47 U/mL.[结论]本文成功构建了一株产溶血性磷脂酶C活性较高的重组大肠杆菌菌株,并通过优化发酵条件使其酶活达到了722.89±0.47 U/mL,本实验在国内首次实现了铜绿假单胞菌来源的溶血性磷脂酶C基因在大肠杆菌的胞内表达,该研究为研究磷脂酶C产业化奠定了一定的基础.  相似文献   
129.
Recent publications have found an association between variants of exostosin 2 (EXT2) gene and the risk of type 2 diabetes in some population but not in others. In an attempt to address these inconsistencies, we investigated EXT2 variants in two independent cohorts, and conducted a literature-based meta-analysis. Through regression model, we assessed the relationship between the EXT2 single nucleotide polymorphisms (SNPs) (rs3740878, rs11037909 and rs1113132) and the risk of type 2 diabetes in Han Chinese population, including a total of 2,533 cases and 2,643 controls. We combined our data with that from previously published studies and performed a meta-analysis to evaluate the effect size of the gene. Consistent with some studies, we found marginal association for the rs3740878 (OR = 1.07, 95 % CI = 0.99, 1.16, p = 0.09), rs11037909 (OR = 1.07, 95 % CI = 0.99, 1.16, p = 0.08), and rs1113132 (OR = 1.08, 95 % CI = 1.00, 1.17, p = 0.06) in our 2 cohorts. Meta-analysis, comprising 9,224 type 2 diabetes and 10,484 controls, revealed that three SNPs (rs3740878, rs11037909 and rs1113132) in EXT2 were significantly associated with type 2 diabetes (ORs range from 1.06 to 1.07, p = 0.038, p = 0.008 and p = 0.005, respectively). Variation in the EXT2 locus appears to be associated with a small increase in the risk of type 2 diabetes. However, well-designed prospective studies with larger sample size and more ethnic groups are needed to further validate the results.  相似文献   
130.
The effects of 6-benzylaminopurine (6-BA) on plant growth, net photosynthetic rate, relative chlorophyll content, soluble protein, carbohydrates contents and antioxidant systems of cucumber (Cucumis sativus L.) under low-light environment were investigated using two different cucumber cultivars. The results showed that the weak light resulted in the remarkable decrease in plant net photosynthetic rate, relative chlorophyll content, soluble protein and carbohydrates contents, but promoted the superoxide dismutase and guaiacol peroxidase activities. However, application of 6-BA alleviated the reduction of the correlative parameters and mediated the changes of antioxidant systems. The potential mechanisms may involve the following aspects: 6-BA clearly enhanced the plants’ tolerance to low light by increasing chlorophyll content, reducing the production of superoxide radical (O 2 ·? ), and enhancing the quenching of hydrogen peroxide (H2O2), consequently alleviating the injury of photosynthetic system, and further increasing the efficiency of CO2 assimilation, producing more carbohydrates which can meet the growth need of cucumber. Meanwhile, the present study indicated that cucumber of Europe mini type (Chunqiuwang) was more tolerant to low light than HuaNan type (Huza No.3).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号