首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19390篇
  免费   2140篇
  国内免费   653篇
  2023年   136篇
  2022年   267篇
  2021年   588篇
  2020年   425篇
  2019年   505篇
  2018年   526篇
  2017年   423篇
  2016年   661篇
  2015年   863篇
  2014年   1066篇
  2013年   1051篇
  2012年   1269篇
  2011年   1144篇
  2010年   774篇
  2009年   698篇
  2008年   869篇
  2007年   837篇
  2006年   657篇
  2005年   592篇
  2004年   528篇
  2003年   482篇
  2002年   407篇
  2001年   1259篇
  2000年   1099篇
  1999年   847篇
  1998年   300篇
  1997年   299篇
  1996年   236篇
  1995年   193篇
  1994年   204篇
  1993年   135篇
  1992年   412篇
  1991年   360篇
  1990年   303篇
  1989年   245篇
  1988年   218篇
  1987年   166篇
  1986年   158篇
  1985年   130篇
  1984年   74篇
  1983年   69篇
  1982年   32篇
  1979年   41篇
  1978年   32篇
  1976年   38篇
  1975年   36篇
  1973年   39篇
  1972年   50篇
  1971年   45篇
  1970年   34篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
921.
Although dengue virus (DENV) infection severely threatens the health of humans, no specific antiviral drugs are currently approved for clinical use against DENV infection. Attachment and fusion are 2 critical steps for the flavivirus infection, and the corresponding functional epitopes are located at E protein domain III (E-DIII) and domain II (E-DII), respectively. Here, we constructed a bispecific antibody (DVD-1A1D-2A10) based on the 2 well-characterized anti-DENV monoclonal antibodies 1A1D-2 (1A1D) and 2A10G6 (2A10). The 1A1D antibody binds E-DIII and can block the virus attaching to the cell surface, while the 2A10 antibody binds E-DII and is able to prevent the virus from fusing with the endosomal membrane. Our data showed that DVD-1A1D-2A10 retained the antigen-binding activity of both parental antibodies. Importantly, it was demonstrated to be significantly more effective at neutralizing DENV than its parental antibodies both in vitro and in vivo, even better than the combination of them. To eliminate the potential antibody-dependent enhancement (ADE) effect, this bispecific antibody was successfully engineered to prevent Fc-γ-R interaction. Overall, we generated a bispecific anti-DENV antibody targeting both attachment and fusion stages, and this bispecific antibody broadly neutralized all 4 serotypes of DENV without risk of ADE, suggesting that it has great potential as a novel antiviral strategy against DENV.  相似文献   
922.
MPDL3280A is a human monoclonal antibody that targets programmed cell death-1 ligand 1 (PD-L1), and exerts anti-tumor activity mainly by blocking PD-L1 interaction with programmed cell death-1 (PD-1) and B7.1. It is being investigated as a potential therapy for locally advanced or metastatic malignancies. The purpose of the study reported here was to characterize the pharmacokinetics, pharmacodynamics, tissue distribution and tumor penetration of MPDL3280A and/or a chimeric anti-PD-L1 antibody PRO304397 to help further clinical development.

The pharmacokinetics of MPDL3280A in monkeys at 0.5, 5 and 20 mg·kg?1 and the pharmacokinetics / pharmacodynamics of PRO304397 in mice at 1, 3 10 mg·kg?1 were determined after a single intravenous dose. Tissue distribution and tumor penetration for radiolabeled PRO304397 in tumor-bearing mouse models were determined.

The pharmacokinetics of MPDL3280A and PRO304397 were nonlinear in monkeys and mice, respectively. Complete saturation of PD-L1 in blood in mice was achieved at serum concentrations of PRO304397 above ~0.5 µg·mL?1. Tissue distribution and tumor penetration studies of PRO304397 in tumor-bearing mice indicated that the minimum tumor interstitial to plasma radioactivity ratio was ~0.3; saturation of target-mediated uptake in non–tumor tissues and desirable exposure in tumors were achieved at higher serum concentrations, and the distribution into tumors was dose-and time-dependent.

The biodistribution data indicated that the efficacious dose is mostly likely higher than that estimated based on simple pharmacokinetics/pharmacodynamics in blood. These data also allowed for estimation of the target clinical dose for further development of MPDL3280A.  相似文献   
923.
Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin''s effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS.Acute respiratory distress syndrome (ARDS) is a devastating condition with a 30–60% mortality rate.1, 2 Although the pathogenesis of ARDS is complex, the inflammatory response and endothelial barrier disruption play important roles in the development of ARDS.3, 4, 5 Therefore, in addition to conventional anti-inflammatory treatments, therapeutic strategies aim to restore pulmonary endothelial barrier integrity and function through regulating inter-endothelial AJs and the endothelial cytoskeleton to minimize protein leakage and leukocyte infiltration under ARDS conditions.6, 7Obesity, especially visceral obesity, has clearly been shown to impair systemic vasculature and to lead to the initiation and progression of vascular disorders.8, 9, 10 Although different from the well-documented impacts of obesity on cardiovascular disease, the relationships between obesity and ARDS have not been well elucidated. Clinical and experimental data focused on pertinent physiological changes in obesity indicate that the obesity may alter ARDS pathogenesis by ‘priming'' the pulmonary endothelial barrier for insult and amplifying the early inflammatory response, thus lowering the threshold to initiate ARDS.11, 12 Contrary to conventional dogma, adipose tissue is now appreciated as an important endocrine tissue that secretes various bioactive molecules called adipokines, which contribute to the progression of diverse vascular diseases, including hypertension, cardiovascular disease and atherosclerosis.13, 14, 15, 16 Although ARDS is not a classified pulmonary vascular disease, it is a severe inflammatory lung condition with widespread pulmonary endothelial breakdown. Clinical evidence has indicated that the obesity might be an emerging risk factor for ARDS and that circulating adipokines levels are associated with the initiation and progression of ARDS.11, 12, 17, 18 Moreover, experimental studies have suggested that some anti-inflammatory adipokines, such as adiponectin and apelin, exert beneficial actions on ARDS.19, 20, 21Omentin is an anti-inflammatory adipokine that is abundant in human visceral fat tissue.22, 23 Paradoxically, higher circulating omentin-1 levels are present in lean and healthy individuals compared with the obese and diabetic patients. Moreover, as a novel biomarker of endothelial dysfunction, reduced circulating omentin levels are related to the pathological mechanism of obesity-linked vascular disorders, including type 2 diabetes, atherosclerosis, hypertension and cardiovascular disease.24, 25, 26, 27, 28 Furthermore, experimental studies have found that omentin stimulates vasodilation in isolated blood vessels and suppresses cytokine-stimulated inflammation in endothelial cells (ECs).29, 30, 31 Thus, these data suggest that omentin may protect against obesity-related vascular complications through its anti-inflammatory and vascular-protective properties; however, little is known regarding its role in lung tissue. It was reported that decreased circulating omentin-1 levels could be regarded as an independent predictive marker for the obstructive sleep apnea syndrome and that omentin protects against pulmonary arterial hypertension through inhibiting vascular structure remodeling and abnormal contractile reactivity.32, 33, 34 However, to our knowledge, no study has assessed the impact of omentin on ARDS.Akt-related signaling pathways function as an endogenous negative feedback mechanism in response to the injurious stimulus. Our prior studies have demonstrated that Akt-related signaling contributes to protection against ARDS.35, 36 Moreover, omentin has been reported to exert anti-inflammatory, pro-survival and pro-angiogenic functions in various cells via an Akt-dependent mechanism.30, 31, 37, 38, 39, 40, 41, 42Collectively, given that ARDS is ultimately an obesity-related disorder of vascular function and that omentin is a favorable pleiotropic adipokine capable of anti-inflammatory, pro-angiogenic and anti-apoptotic abilities; omentin may exert beneficial effects on ARDS. In the present study, we first aimed to appraise the clinical significance of omentin in ARDS and then specifically evaluated its impact on inflammation and the endothelial barrier. Furthermore, we mechanistically investigated the role of Akt-related signaling pathways in these effects induced by omentin in vivo and in vitro.  相似文献   
924.
925.
Obesity-associated chronic inflammation is characterized by an accumulation of adipose tissue macrophages (ATMs). It is generally believed that those macrophages are derived from peripheral blood monocytes. However, recent studies suggest that local proliferation of macrophages is responsible for ATM accumulation. In the present study, we revealed that both migration and proliferation contribute to ATM accumulation during obesity development. We show that there is a significant increase in ATMs at the early stage of obesity, which is largely due to an enhanced in situ macrophage proliferation. This result was obtained by employing fat-shielded irradiation and bone marrow reconstitution. Additionally, the production of CCL2, a pivotal chemoattractant of monocytes, was not found to be increased at this stage, corroborating with a critical role of proliferation. Nonetheless, as obesity proceeds, the role of monocyte migration into adipose tissue becomes more significant and those new immigrants further proliferate locally. These proliferating ATMs mainly reside in crown-like structures formed by macrophages surrounding dead adipocytes. We further showed that IL-4/STAT6 is a driving force for ATM proliferation. Therefore, we demonstrated that local proliferation of resident macrophages contributes to ATM accumulation during obesity development and has a key role in obesity-associated inflammation.The accumulation of adipose tissue macrophages (ATMs) is a significant characteristic of obesity-associated chronic inflammation. It is also critical in regulating obesity development. In lean animals, there is a low cellularity of resident ATMs interspersing among adipocytes, which are considered as M2 macrophages. During obesity, significantly increased macrophages accumulate in adipose tissue and form the so-called ‘crown-like structures'' (CLSs) around the dead adipocytes.1, 2 Those macrophages exhibit M1 phenotype and produce various types of inflammatory cytokines, such as TNF-α, resulting in the propagation of obesity-related inflammation and the development of metabolic disorders, such as insulin resistance.3, 4, 5Traditionally, the accumulated ATMs are considered as a consequence of peripheral monocyte migration under inflammatory conditions. Recently, increasing evidences have shown that the maintenance of tissue macrophages is probably independent of the replenishment of circulating monocytes and even independent of precursors from bone marrow.6 Indeed, several kinds of tissue macrophages are capable of self-renewal and proliferate locally in naive state, such as microglia,7, 8 Kupffer cells,9 and Langerhans cells.10In acute inflammation status, for instance, during parasitic infection, local proliferation of macrophages is boosted and these macrophages exhibit phenotypes of alternatively activated macrophages, a process driven by Th2 cytokines.11 In chronic inflammation conditions, such as atherosclerosis, local proliferation of macrophages also occurs and contributes to macrophage accumulation in arterial walls.12 Most recently, it has been reported that local proliferation of macrophages could contribute to the ATM accumulation in obesity.13, 14Given the potential contributions of monocyte migration and macrophage proliferation to ATM accumulation, an important question about the respective role of each event in ATM accumulation during obesity is raising. To address it, we first focus on the initiation of ATM accumulation in obesity. We found that, although there is no significant change in the level of chemokine (C-C motif) ligand 2 (CCL2) either in adipose tissue or in circulation, the cellularity of ATMs is dramatically elevated at the early stage of obesity. Interestingly, the increase of ATMs was accompanied with vigorous ATM proliferation. By inducing obesity in chimeric mice that were generated by fat-shielded irradiation and bone marrow transplantation, we demonstrated that in situ proliferation of resident macrophages dominates the initiation of ATM accumulation at early stage of obesity, and the recruited monocytes make contribution to ATM accumulation at a relatively late stage of obesity. This study sheds light on the dynamic process of ATM accumulation and provides insight on the initiation of obesity-associated inflammation.  相似文献   
926.
Z Chen  X Wan  Q Hou  S Shi  L Wang  P Chen  X Zhu  C Zeng  W Qin  W Zhou  Z Liu 《Cell death & disease》2016,7(1):e2068
GADD45 gene has been implicated in cell cycle arrest, cell survival or apoptosis in a cell type specific and context-dependent manner. Members of GADD45 gene family have been found differentially expressed in several podocyte injury models, but their roles in podocytes are unclear. Using an in vivo zebrafish model of inducible podocyte injury that we have previously established, we found that zebrafish orthologs of gadd45b were induced upon the induction of podocyte injury. Podocyte-specific overexpression of zebrafish gadd45b exacerbated edema, proteinuria and foot-process effacement, whereas knockdown of gadd45b by morpholino-oligos in zebrafish larvae ameliorated podocyte injury. We then explored the role of GADD45B induction in podocyte injury using in vitro podocyte culture. We confirmed that GADD45B was significantly upregulated during the early phase of podocyte injury in cultured human podocytes and that podocyte apoptosis induced by TGF-β and puromycin aminonucleoside (PAN) was aggravated by GADD45B overexpression but ameliorated by shRNA-mediated GADD45B knockdown. We also showed that ROS inhibitor NAC suppressed PAN-induced GADD45B expression and subsequent activation of p38 MAPK pathway in podocytes and that inhibition of GADD45B diminished PAN-induced p38 MAPK activation. Taken together, our findings demonstrated that GADD45B has an important role in podocyte injury and may be a therapeutic target for the management of podocyte injury in glomerular diseases.Podocyte dysfunction, injury or loss is a common and decisive cause of various glomerular diseases and understanding the molecular mechanism underlying podocyte response to stress will be very helpful to undermine the pathogenesis of podocyte injury and the targeted therapy for glomerular diseases.The members of Gadd45 gene family, Gadd45a, Gadd45b and Gadd45r have been commonly implicated in stress signaling in response to physiological or environmental stressors, resulting in cell cycle arrest, DNA damage repair, cell survival, senescence and apoptosis.1 Recently, this gene family has been found differentially expressed in several podocyte injury models. Zhang et al.2 observed an induction of GADD45β mRNA expression by lipopolysaccharide in the lung, kidney and spleen, which had the highest GADD45β mRNA expression among all of the tissues examined. Jeffrey W Pippin reported that protein expression of GADD45 was increased in glomeruli from passive Heymann nephritis rats and cultured podocytes exposed in vitro to C5b-9. 3 More recently, Shi et al.4 reported that Gadd45b was upregulated in glomeruli of mice with podocyte-specific deletion of Dicer, suggesting the involvement of Gadd45b in podocyte injury. However, no functional characterization of Gadd45 genes in podocytes has been conducted to date and the role of GADD45B in the context of podocyte injury remains unclear.Zebrafish has emerged as a new vertebrate model system for renal glomerular research. The podocytes and renal glomeruli in zebrafish kidney are structurally, molecularly and functionally conserved, rendering zebrafish a valuable and relevant model for podocyte studies. To characterize the role of GADD45b in podocyte injury, we therefore employed zebrafish as an in vivo model system and human podocytes as an in vitro model. We observed the upregulation of GADD45B on podocyte injury in zebrafish renal glomeruli as well as in cultured human podocytes treated with TGF-β and PAN. We further showed that podocyte-specific overexpression of zebrafish orthologs of gadd45b predisposed podocytes to injury, whereas inhibition of gadd45b expression in zebrafish larvae ameliorated podocyte injury and reduced proteinuria. Furthermore, we found that the ROS-GADD45B-p38 pathway was involved in the regulation of GADD45B expression and deleterious role in podocyte injury. Collectively, we have identified GADD45B as an important player in podocyte injury.  相似文献   
927.
928.
C Dou  N Ding  J Xing  C Zhao  F Kang  T Hou  H Quan  Y Chen  Q Dai  F Luo  J Xu  S Dong 《Cell death & disease》2016,7(3):e2162
Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss.Bone is a dynamic organ that undergoes continuous remodeling throughout life. Bone homeostasis is maintained by a balanced bone-resorbing and bone-forming process. In this process, hematopoietic stem cells or monocytes/macrophage progenitor cell-derived osteoclasts (OCs) are mainly responsible for bone resorption.1 Abnormal OC function is associated with numerous diseases, and most of them are due to excessive osteoclastic activity. These diseases include osteoporosis, rheumatoid arthritis and periodontitis.2, 3 Two of the most important regulating factors during OC differentiation are receptor activator of nuclear factor κB ligand (RANKL) and macrophage-colony-stimulating factor (M-CSF).4, 5 Binding of RANKL to RANK results in the initiation of the TNF receptor-associated factor 6 signaling, which activates nuclear factor-κB, Akt and MAP kinase (ERk, JNK and p-38), and eventually leads to the proliferation, differentiation and maturation of OCs.6, 7Lipopolysaccharide (LPS) is an important component of the outer membrane of Gram-negative bacteria. In LPS-induced bone loss, many factors are involved including local host response, prostanoids and cytokine production, inflammatory cell recruitment and OC activation.8, 9, 10 Experimental evidence have shown that LPS-mediated inflammation is highly dependent on reactive oxygen species (ROS) and the associated downstream MAPK signaling pathways including ERK, JNK and p-38.11, 12 ROS has been shown having an important role in the process of OC differentiation, survival, activation and bone resorption.13, 14, 15, 16 It has also been proved that ROS production in OC and intracellular hydrogen peroxide accumulation is critical for osteoclastogenesis and skeletal homeostasis.17 Recently, a study reported that LPS induces OC formation via the ROS-mediated JNK and STAT3 pathway, which could be blocked by peroxiredoxin II.18Dihydroartemisinin (DHA) is the main active metabolite isolated from the plant Artemisia annua. DHA has been widely used as first-line therapeutics against falciparum malaria.19 Recent evidence suggested that DHA has antitumor effects because of its unique cytotoxicity mechanism.20 In particular, studies reported that DHA is pro-apoptotic in tumor cell lines regarding breast and prostate cancer.21, 22 Although the detailed mechanism of DHA cytotoxicity and pro-apoptotic effects is not fully understood, DHA-mediated ROS production has a central role.23, 24 However, the effect of DHA on bone health has not been studied.In the present study, we reported that DHA could attenuate LPS-induced OC differentiation, fusion and bone-resorption activity in vitro. Our data showed that DHA-induced cell apoptosis during LPS-induced osteoclastogenesis via intracellular ROS generation and mitochondria-mediated pathways. DHA administration in LPS-induced mouse models decreased OC number and reversed bone loss in vivo.  相似文献   
929.
C Luo  X Yao  J Li  B He  Q Liu  H Ren  F Liang  M Li  H Lin  J Peng  T F Yuan  Z Pei  H Su 《Cell death & disease》2016,7(3):e2160
Subarachnoid hemorrhage (SAH) is a devastating disease with high mortality. The mechanisms underlying its pathological complications have not been fully identified. Here, we investigate the potential involvement of the glymphatic system in the neuropathology of SAH. We demonstrate that blood components rapidly enter the paravascular space following SAH and penetrate into the perivascular parenchyma throughout the brain, causing disastrous events such as cerebral vasospasm, delayed cerebral ischemia, microcirculation dysfunction and widespread perivascular neuroinflammation. Clearance of the paravascular pathway with tissue-type plasminogen activator ameliorates the behavioral deficits and alleviates histological injury of SAH. Interestingly, AQP4−/− mice showed no improvements in neurological deficits and neuroinflammation at day 7 after SAH compared with WT control mice. In conclusion, our study proves that the paravascular pathway dynamically mediates the pathological complications following acute SAH independently of glymphatic control.Cerebral aneurysm rupture causes subarachnoid hemorrhage (SAH), which is associated with a high mortality due to its secondary complications, including hemorrhage, hydrocephalus and delayed cerebral ischemia (DCI).1, 2, 3 Therapeutic interventions against the secondary complications, especially DCI, are yet limited, as the pathological mechanism underlying that is not fully understood.2, 3, 4, 5, 6, 7 Current hypotheses of the development of the secondary complications mainly include cerebral vasospasm (CVS) and the microcirculation disturbance, as well as parenchymal arterial lesions, microthrombosis and neuroinflammation.1, 2, 4, 7, 8, 9Previous studies have shown that the blockade of cerebral lymphatic drainage deteriorated the secondary cerebral ischemia after SAH, suggesting that the cerebral lymphatic drainage pathway could be involved in the pathological mechanism of SAH.10, 11 However, the central nervous system (CNS) was considered lack of a conventional lymphatic drainage system in the past. Recently, several studies have shown that the brain has in fact the proper lymphatic system, including sinus-associated lymphatic vessels and the glymphatic system (GS).12, 13, 14, 15 Sinus-associated lymphatic vessels express all of the molecular hallmarks of lymphatic endothelial cells, contain cerebrospinal fluid (CSF) and immune cells, and drain into the deep cervical lymph nodes.12, 13There is a histologically defined space in the brain, the Virchow–Robin space, where the subarachnoid space meets the paravascular space (or perivascular space in somewhere, PVS).16 The GS is a specialized brain-wide anatomic structure locating at the PVS surrounding the brain vasculature, which is ensheathed with the astroglial endfeet and astroglial water channel aquaporin-4 (AQP4).14, 15 The GS facilitates the efficient lymphatic clearance of extracellular solutes and fluid in the brain through astroglial-mediated interstitial fluid bulk flow.14Impairment of GS involves neurological conditions including traumatic brain injuries,17 ischemic stroke18 and aged brain.19 Interestingly, brain imaging study with magnetic resonance imaging reported weakened GS perfusion following acute stroke or SAH.18, 20 However, little is known about whether the GS is involved in the secondary complications of SAH. Here, we examined the potential involvement of GS in SAH-associated pathology progression with in vivo two-photon microscopy and CLARITY technique.21, 22 Our data showed that subarachnoid blood flowed into the brain parenchyma rapidly through the PVS, causing CVS, vasculitis, widespread microinfraction and neuroinflammation in the animal model of SAH and SAH patients. Prevention of CVS with Fasudil23 did not improve the neurological impairment nor alleviated the pathology, while the PVS clearance with tissue-type plasminogen activator (tPA) infusion improved the behavioral recovery and reduced neuroinflammation in the brain. Interestingly, AQP4−/− mice showed no improvements in neurological deficits and neuroinflammation at day 7 after SAH compared with WT control mice. Our study therefore suggested that the paravacular pathway dynamically mediates the pathological complications following acute SAH independently of glymphatic control.  相似文献   
930.
Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23–26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号