首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1557篇
  免费   135篇
  1692篇
  2023年   10篇
  2022年   18篇
  2021年   28篇
  2020年   21篇
  2019年   24篇
  2018年   23篇
  2017年   22篇
  2016年   37篇
  2015年   87篇
  2014年   93篇
  2013年   105篇
  2012年   161篇
  2011年   129篇
  2010年   122篇
  2009年   90篇
  2008年   95篇
  2007年   100篇
  2006年   97篇
  2005年   76篇
  2004年   87篇
  2003年   62篇
  2002年   69篇
  2001年   10篇
  2000年   8篇
  1999年   15篇
  1998年   13篇
  1997年   3篇
  1996年   11篇
  1995年   3篇
  1994年   6篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   7篇
  1987年   5篇
  1985年   2篇
  1984年   7篇
  1983年   2篇
  1979年   1篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   5篇
  1971年   1篇
  1970年   5篇
  1967年   2篇
  1966年   3篇
排序方式: 共有1692条查询结果,搜索用时 15 毫秒
41.
42.

Background

Changes in fibronectin (Fn) matrix remodeling contribute to mammary tumor angiogenesis and are related to altered behavior of adipogenic stromal cells; yet, the underlying mechanisms remain unclear due in part to a lack of reductionist model systems that allow the inherent complexity of cell-derived extracellular matrices (ECMs) to be deciphered. In particular, breast cancer-associated adipogenic stromal cells not only enhance the composition, quantity, and rigidity of deposited Fn, but also partially unfold these matrices. However, the specific effect of Fn conformation on tumor angiogenesis is undefined.

Methods

Decellularized matrices and a conducting polymer device consisting of poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) were used to examine the effect of Fn conformation on the behavior of 3T3-L1 preadipocytes. Changes in cell adhesion and proangiogenic capability were tested via cell counting and by quantification of vascular endothelial growth factor (VEGF) secretion, respectively. Integrin-blocking antibodies were utilized to examine varied integrin specificity as a potential mechanism.

Results

Our findings suggest that tumor-associated partial unfolding of Fn decreases adhesion while enhancing VEGF secretion by breast cancer-associated adipogenic precursor cells, and that altered integrin specificity may underlie these changes.

Conclusions and general significance

These results not only have important implications for our understanding of tumorigenesis, but also enhance knowledge of cell-ECM interactions that may be harnessed for other applications including advanced tissue engineering approaches. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   
43.
Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.  相似文献   
44.
In the western Atlantic Ocean, the brown algal genus Lobophora is currently represented by a single species, L. variegata, with a type locality designated by Lamouroux as ‘Antilles’. In this study, we used molecular-assisted alpha taxonomy (MAAT) to assess species diversity of Lobophora in Bermuda, the Florida Keys, St. Croix and Guadeloupe (Lesser Antilles). Using cox1 and cox3 sequences as barcode markers, five species of Lobophora, four of them novel, were delineated, all previously having been identified in the area as L. variegata. Our morphological and habitat studies, made possible by abundant sampling, have revealed unique characters for each of these western Atlantic species, including distinct cellular arrangements, as well as different depth ranges for certain species. Observations made from Lamouroux’s holotype of Dictyota variegata (= Lobophora variegata) allowed us to assess the anatomy of this species, which enabled us to easily align this early taxon to one of our genetic species from the western Atlantic. As the type was unavailable for genetic analysis, we selected a recent St. Croix (Virgin Is., Antilles) specimen as the epitype to support it with molecular sequence data.  相似文献   
45.
Metabolic modifications of tumor cells are hallmarks of cancer. They exhibit an altered metabolism that allows them to sustain higher proliferation rates in hostile environment outside the cell. In thyroid tumors, the expression of the estrogen-related receptor α (ERRα), a major factor of metabolic adaptation, is closely related to the oxidative metabolism and the proliferative status of the cells. To elucidate the role played by ERRα in the glycolytic adaptation of tumor cells, we focused on the regulation of lactate dehydrogenases A and B (LDHA, LDHB) and the LDHA/LDHB ratio. Our study included tissue samples from 10 classical and 10 oncocytic variants of follicular thyroid tumors and 10 normal thyroid tissues, as well as samples from three human thyroid tumor cell lines: FTC-133, XTC.UC1 and RO82W-1. We identified multiple cis-acting promoter elements for ERRα, in both the LDHA and LDHB genes. The interaction between ERRα and LDH promoters was confirmed by chromatin immunoprecipitation assays and in vitro analysis for LDHB. Using knock-in and knock-out cellular models, we found an inverse correlation between ERRα expression and LDH activity. This suggests that thyroid tumor cells may reprogram their metabolic pathways through the up-regulation of ERRα by a process distinct from that proposed by the recently revisited Warburg hypothesis.  相似文献   
46.
47.
48.
Macroautophagy requires membrane trafficking and remodelling to form the autophagosome and deliver its contents to lysosomes for degradation. We have previously identified the TBC domain‐containing protein, TBC1D14, as a negative regulator of autophagy that controls delivery of membranes from RAB11‐positive recycling endosomes to forming autophagosomes. In this study, we identify the TRAPP complex, a multi‐subunit tethering complex and GEF for RAB1, as an interactor of TBC1D14. TBC1D14 binds to the TRAPP complex via an N‐terminal 103 amino acid region, and overexpression of this region inhibits both autophagy and secretory traffic. TRAPPC8, the mammalian orthologue of a yeast autophagy‐specific TRAPP subunit, forms part of a mammalian TRAPPIII‐like complex and both this complex and TBC1D14 are needed for RAB1 activation. TRAPPC8 modulates autophagy and secretory trafficking and is required for TBC1D14 to bind TRAPPIII. Importantly, TBC1D14 and TRAPPIII regulate ATG9 trafficking independently of ULK1. We propose a model whereby TBC1D14 and TRAPPIII regulate a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy.  相似文献   
49.
50.
When, how often and for how long organisms mate can have strong consequences for individual fitness and are crucial aspects of evolutionary ecology. Such determinants are likely to be of even greater importance in monandrous species and species with short adult life stages. Previous work suggests that mobility, a key dispersal? related trait, may affect the dynamics of copulations, but few studies have investigated the impact of individual mobility on mating latency, copulation duration and oviposition latency simultaneously. In this paper, we monitored the copulation dynamics of 40 males and 40 females, as well as the oviposition dynamics of the females of the Large White butterfly Pieris brassicae, a facultative long-distance disperser butterfly. Individuals from a breeding were selected to create a uniform distribution of mobility and we recorded the timing, number and duration of all copulations in a semiexperimental system. We showed that mobility, measured as the time spent in flight under stressful conditions (a proxy of dispersal tendency), correlates with all aspects of copulation dynamics: mobile males and females mated earlier and for shorter periods than less mobile individuals. In turn, late mating females increased the time between copulation and oviposition. These results feed the previously described mobility syndrome of R brassicae, involving morphological and physiological characters, with life-history traits. We suggest that the reduction of mating latency and copulation duration has an adaptive value in dispersing individuals, as their life expectancy might be shorter than that of sedentary individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号