首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1365篇
  免费   119篇
  2023年   8篇
  2022年   18篇
  2021年   27篇
  2020年   20篇
  2019年   24篇
  2018年   23篇
  2017年   21篇
  2016年   37篇
  2015年   80篇
  2014年   87篇
  2013年   97篇
  2012年   150篇
  2011年   120篇
  2010年   114篇
  2009年   82篇
  2008年   85篇
  2007年   95篇
  2006年   91篇
  2005年   70篇
  2004年   73篇
  2003年   57篇
  2002年   60篇
  2001年   7篇
  2000年   3篇
  1999年   8篇
  1998年   9篇
  1997年   2篇
  1996年   5篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
排序方式: 共有1484条查询结果,搜索用时 31 毫秒
21.
Human obesity is characterized by chronic low-grade inflammation in white adipose tissue and is often associated with hypertension. The potential induction of indoleamine 2,3-dioxygenase-1 (IDO1), the rate-limiting enzyme in tryptophan/kynurenine degradation pathway, by proinflammatory cytokines, could be associated with these disorders but has remained unexplored in obesity. Using immunohistochemistry, we detected IDO1 expression in white adipose tissue of obese patients, and we focused on its contribution in the regulation of vascular tone and on its immunoregulatory effects. Concentrations of tryptophan and kynurenine were measured in sera of 36 obese and 15 lean women. The expression of IDO1 in corresponding omental and subcutaneous adipose tissues and liver was evaluated. Proinflammatory markers and T-cell subsets were analyzed in adipose tissue via the expression of CD14, IL-18, CD68, TNFα, CD3ε, FOXP3 [a regulatory T-cell (Treg) marker] and RORC (a Th17 marker). In obese subjects, the ratio of kynurenine to tryptophan, which reflects IDO1 activation, is higher than in lean subjects. Furthermore, IDO1 expression in both adipose tissues and liver is increased and is inversely correlated with arterial blood pressure. Inflammation is associated with a T-cell infiltration in obese adipose tissue, with predominance of Th17 in the omental compartment and of Treg in the subcutaneous depot. The Th17/Treg balance is decreased in subcutaneous fat and correlates with IDO1 activation. In contrast, in the omental compartment, despite IDO1 activation, the Th17/Treg balance control is impaired. Taken together, our results suggest that IDO1 activation represents a local compensatory mechanism to limit obesity-induced inflammation and hypertension.  相似文献   
22.
Vascular plants reinforce the cell walls of the different xylem cell types with lignin phenolic polymers. Distinct lignin chemistries differ between each cell wall layer and each cell type to support their specific functions. Yet the mechanisms controlling the tight spatial localization of specific lignin chemistries remain unclear. Current hypotheses focus on control by monomer biosynthesis and/or export, while cell wall polymerization is viewed as random and nonlimiting. Here, we show that combinations of multiple individual laccases (LACs) are nonredundantly and specifically required to set the lignin chemistry in different cell types and their distinct cell wall layers. We dissected the roles of Arabidopsis thaliana LAC4, 5, 10, 12, and 17 by generating quadruple and quintuple loss-of-function mutants. Loss of these LACs in different combinations led to specific changes in lignin chemistry affecting both residue ring structures and/or aliphatic tails in specific cell types and cell wall layers. Moreover, we showed that LAC-mediated lignification has distinct functions in specific cell types, waterproofing fibers, and strengthening vessels. Altogether, we propose that the spatial control of lignin chemistry depends on different combinations of LACs with nonredundant activities immobilized in specific cell types and cell wall layers.

The spatial control of lignin chemistry, and thus of specific cellular functions, depends on combinations of laccases with nonredundant activities in specific cell types and cell wall layers.

IN A NUTSHELL Background: Lignins are a diverse, complex group of aromatic polymers that accumulate in cell walls of vascular plants, reinforcing organs, and enabling long-distance water transport. The different cell wall layers of each cell type exhibit specific lignin chemistries with distinct proportions of specific aromatic substitutions and aliphatic functions. The spatial control of this lignin chemistry was supposed to depend exclusively on the chemical identity of the lignin monomers exported into the cell wall. However, monomer supply alone cannot fully explain the sharp spatial differences between each cell wall layer in the different cell types. We, therefore, investigated whether different paralogs of the lignin monomer-oxidizing LACCASE enzymes are responsible for spatially controlling lignin chemistry at the cell wall layer level for the different cell types in the vascular tissues of plants. Question: How are specific lignin chemistries spatially controlled by LACCASE paralogs in each cell wall layer and cell type? What are the roles of LACCASE-dependent lignin accumulation for the mechanical reinforcement and the waterproofing of different cell types in plant vascular tissues? Findings: We answered these questions by identifying the LACCASE paralogs specifically expressed in vascular cells undergoing lignin accumulation. We analyzed their functions using genetic engineering to switch off five of the six LACCASE paralog genes associated with lignin formation. Their importance in the cell wall layer and cell type lignin accumulation was determined by comparing plants sharing four of the five mutations in different LACCASE paralogs. We show that each LACCASE paralog exhibits specific substrate preference, pH optimum and localization differing between the cell wall layers of each cell type. Their lignin concentration and composition moreover depended on specific combinations of LACCASE paralogs, each enabling different aromatic substitutions and aliphatic functions to accumulate. Impairing these LACCASE-dependent lignin chemistries resulted in the loss of cell wall mechanical resistance of sap-conducting cells and the loss of cell wall waterproofing of organ-reinforcing fiber cells. Next steps: We are now pursuing research to understand the molecular mechanisms controlling the supply of lignin precursors as well as the temporal regulation activating lignification during the formation/maturation of each cell wall layer in the different cell types.  相似文献   
23.
Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.  相似文献   
24.
25.
Group‐living animals often maintain a few very close affiliative relationships—social bonds—that can buffer them against many of the inevitable costs of gregariousness. Kinship plays a central role in the development of such social bonds. The bulk of research on kin biases in sociality has focused on philopatric females, who typically live in deeply kin‐structured systems, with matrilineal dominance rank inheritance and life‐long familiarity between kin. Closely related males, in contrast, are usually not close in rank or familiar, which offers the opportunity to test the importance of kinship per se in the formation of social bonds. So far, however, kin biases in male social bonding have only been tested in philopatric males, where familiarity remains a confounding factor. Here, we studied bonds between male Assamese macaques, a species in which males disperse from their natal groups and in which male bonds are known to affect fitness. Combining extensive behavioural data on 43 adult males over a 10‐year period with DNA microsatellite relatedness analyses, we find that postdispersal males form stronger relationships with the few close kin available in the group than with the average nonkin. However, males form the majority of their bonds with nonkin and may choose nonkin over available close kin to bond with. Our results show that kinship facilitates bond formation, but is not a prerequisite for it, which suggests that strong bonds are not restricted to kin in male mammals and that animals cooperate for both direct and indirect fitness benefits.  相似文献   
26.
Dental caries is the major oral health problem in most of the countries, affecting 60-90% of school children and a vast majority of adults. Therefore, it is of interest to evaluate the association of age with Class VI defects restored with composite restorations. We used 102 cases with data regarding Class VI composite restorations in a datasheet of 86,000 records at Saveetha Dental College, India for this study. Data shows that Class VI restorations were commonly seen in upper anterior teeth in the age group of 51 and above. The cavities prepared to receive Class VI restoration followed a conservative design of caries removal and used direct restoration techniques for reconstruction of the lost tooth structure.  相似文献   
27.
Evolution sometimes proceeds by loss, especially when structures and genes become dispensable after an environmental shift relaxes functional constraints. Subterranean vertebrates are outstanding models to analyze this process, and gene decay can serve as a readout. We sought to understand some general principles on the extent and tempo of the decay of genes involved in vision, circadian clock, and pigmentation in cavefishes. The analysis of the genomes of two Cuban species belonging to the genus Lucifuga provided evidence for the largest loss of eye-specific genes and nonvisual opsin genes reported so far in cavefishes. Comparisons with a recently evolved cave population of Astyanax mexicanus and three species belonging to the Chinese tetraploid genus Sinocyclocheilus revealed the combined effects of the level of eye regression, time, and genome ploidy on eye-specific gene pseudogenization. The limited extent of gene decay in all these cavefishes and the very small number of loss-of-function mutations per pseudogene suggest that their eye degeneration may not be very ancient, ranging from early to late Pleistocene. This is in sharp contrast with the identification of several vision genes carrying many loss-of-function mutations in ancient fossorial mammals, further suggesting that blind fishes cannot thrive more than a few million years in cave ecosystems.  相似文献   
28.
Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane-metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%–90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis-aggregate-associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co-occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.  相似文献   
29.
Individual dispersal,landscape connectivity and ecological networks   总被引:1,自引:0,他引:1  
Connectivity is classically considered an emergent property of landscapes encapsulating individuals' flows across space. However, its operational use requires a precise understanding of why and how organisms disperse. Such movements, and hence landscape connectivity, will obviously vary according to both organism properties and landscape features. We review whether landscape connectivity estimates could gain in both precision and generality by incorporating three fundamental outcomes of dispersal theory. Firstly, dispersal is a multi‐causal process; its restriction to an ‘escape reaction’ to environmental unsuitability is an oversimplification, as dispersing individuals can leave excellent quality habitat patches or stay in poor‐quality habitats according to the relative costs and benefits of dispersal and philopatry. Secondly, species, populations and individuals do not always react similarly to those cues that trigger dispersal, which sometimes results in contrasting dispersal strategies. Finally, dispersal is a major component of fitness and is thus under strong selective pressures, which could generate rapid adaptations of dispersal strategies. Such evolutionary responses will entail spatiotemporal variation in landscape connectivity. We thus strongly recommend the use of genetic tools to: (i) assess gene flow intensity and direction among populations in a given landscape; and (ii) accurately estimate landscape features impacting gene flow, and hence landscape connectivity. Such approaches will provide the basic data for planning corridors or stepping stones aiming at (re)connecting local populations of a given species in a given landscape. This strategy is clearly species‐ and landscape‐specific. But we suggest that the ecological network in a given landscape could be designed by stacking up such linkages designed for several species living in different ecosystems. This procedure relies on the use of umbrella species that are representative of other species living in the same ecosystem.  相似文献   
30.
None of the polymorphic variants of the IL2RA gene found associated with Type 1 Diabetes (T1D) was shown to have a functional effect. To test if the epigenetic variation could play a role at this locus, we studied the methylation of 6 CpGs located within the proximal promoter of IL2RA gene in 252 T1D patients compared with 286 age-matched controls. We found that DNA methylation at CpGs −373 and −456 was slightly but significantly higher in patients than in controls (40.4±4.6 vs 38.3±5.4, p = 1.4E4; 91.4±2.8 vs 89.5±5.3, p = 1.8E-6), while other CpG showed a strictly comparable methylation. Among 106 single nucleotide polymorphisms (SNPs) located in the neighboring 180kb region, we found that 28 SNPs were associated with DNA methylation at CpG −373. Sixteen of these SNPs were known to be associated with T1D. Our findings suggest that the effect of IL2RA risk alleles on T1D may be partially mediated through epigenetic changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号