首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1467篇
  免费   119篇
  1586篇
  2023年   8篇
  2022年   20篇
  2021年   28篇
  2020年   21篇
  2019年   23篇
  2018年   25篇
  2017年   26篇
  2016年   39篇
  2015年   82篇
  2014年   91篇
  2013年   103篇
  2012年   154篇
  2011年   127篇
  2010年   116篇
  2009年   86篇
  2008年   94篇
  2007年   106篇
  2006年   94篇
  2005年   78篇
  2004年   77篇
  2003年   65篇
  2002年   64篇
  2001年   8篇
  2000年   5篇
  1999年   10篇
  1998年   11篇
  1997年   3篇
  1996年   6篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
排序方式: 共有1586条查询结果,搜索用时 15 毫秒
101.
The structural role of extracellular-matrix (ECM) has been recognized in both plants and animals as a support and anchorage-inducing cell behavior. Unlike the animal ECM proteins, the proteins that have been identified in plant ECM have not yet been purified from whole plants and cell wall. As several immunological data indicate the presence of animal ECM-like proteins in plants cell wall, especially under salt stress or water deficit, we propose a protocol to purify a fibronectin-like protein from the cell wall of epicotyls of young germinating peas. The process consists of a combination of gelatin and heparin affinity chromatography, close to the classical one used for human blood plasma fibronectin purification. Proteins with affinity for gelatin and heparin, immunologically related to human fibronectin, are found in the cell wall of epicotyls grown under salt stress or not. Total amount of purified proteins is 3-4 times more enriched in salt stressed epicotyls. SDS-PAGE and Western blot with antibodies directed against human blood plasma fibronectin give evidence that the cell wall proteins purified by gelatin/heparin affinity chromatography are closely related to human fibronectin. The present protocol leads us to purify 17 (control) or 65 (salt stress) micrograms of protein per g of fresh starting material. Our results suggest that plant cell wall proteins can provide better anchorage of the cell to its cell-wall during salt stress or water deficit and could be considered not only as cell adhesion but also as signaling molecules.  相似文献   
102.
Although compelling evidence supports the central role of caspase-activated DNase (CAD) in oligonucleosomal DNA fragmentation in apoptotic nuclei, the regulation of CAD activity remains elusive in vivo. We used fluorescence photobleaching and biochemical techniques to investigate the molecular dynamics of CAD. The CAD-GFP fusion protein complexed with its inhibitor (ICAD) was as mobile as nuclear GFP in the nucleosol of dividing cells. Upon induction of caspase-3-dependent apoptosis, activated CAD underwent progressive immobilization, paralleled by its attenuated extractability from the nucleus. CAD immobilization was mediated by its NH2 terminus independently of its DNA-binding activity and correlated with its association to the interchromosomal space. Preventing the nuclear attachment of CAD provoked its extracellular release from apoptotic cells. We propose a novel paradigm for the regulation of CAD in the nucleus, involving unrestricted accessibility of chromosomal DNA at the initial phase of apoptosis, followed by its nuclear immobilization that may prevent the release of the active nuclease into the extracellular environment.  相似文献   
103.
104.
The native European flat oyster Ostrea edulis is listed in the OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic (species and habitat protection) and in the UK Biodiversity Action Plan. Once extremely abundant in the nineteenth century, European stocks of O. edulis have declined during the twentieth century to rare, small, localised populations due to overexploitation, habitat degradation and, most recently, the parasitic disease bonamiosis. Selective breeding programmes for resistance to bonamiosis have been initiated in France and Ireland. High genetic diversity and bonamiosis-resistance would be important features of any sustainable restoration programmes for O. edulis. Oysters were sampled across Europe from four hatchery sources, four pond-cultured sources and four wild, but managed fisheries and were genotyped at five microsatellite loci. Hatchery-produced populations from small numbers of broodstock showed a significant loss of genetic diversity relative to wild populations and pedigree reconstruction revealed that they were each composed of a single large full-sib family and several small full-sib families. This extremely low effective population size highlights the variance in reproductive success among the potential breeders. Pond-cultured oysters were intermediate in genetic diversity and effective population size between hatchery and wild populations. Controlled hatchery production allows the development of bonamiosis-resistant strains, but at the expense of genetic diversity. Large scale pond culture on the other hand can provide a good level of genetic diversity. A mixture of these two approaches is required to ensure a healthy and sustainable restoration programme for O. edulis in Europe.  相似文献   
105.
Maternal effects can influence offspring growth and development, and thus fitness. However, the physiological factors mediating these effects in nonhuman primates are not well understood. We investigated the impact of maternal effects on variation in three important components of the endocrine regulation of growth in male and female mandrills (Mandrillus sphinx), from birth to 9 years of age. Using a mixed longitudinal set (N = 252) of plasma samples, we measured concentrations of insulin‐like growth factor‐I (IGF‐I), growth hormone binding protein (GHBP), and free testosterone (free T). We evaluated the relationship of ontogenetic patterns of changes in hormone concentration to patterns of growth in body mass and body length, and determined that these endocrine factors play a significant role in growth of both young (infant and juvenile) and adolescent male mandrills, but only in growth of young female mandrills. We also use mixed models analysis to determine the relative contribution of the effects of maternal rank, parity, and age on variation in hormone and binding protein concentrations. Our results suggest that all of these maternal effects account for significant variation in hormone and binding protein concentrations in all male age groups. Of the maternal effects measured, maternal rank was the most frequently identified significant maternal effect on variation in hormone and binding protein concentrations. We suggest that these endocrine factors provide mechanisms that contribute to the maternal effects on offspring growth previously noted in this population. Am. J. Primatol. 74:890‐900, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
106.
The large and complex genome of wheat makes genetic and genomic analysis in this important species both expensive and resource intensive. The application of next-generation sequencing technologies is particularly resource intensive, with at least 17?Gbp of sequence data required to obtain minimal (1×) coverage of the genome. A similar volume of data would represent almost 40× coverage of the rice genome. Progress can be made through the establishment of consortia to produce shared genomic resources. Australian wheat genome researchers, working with Bioplatforms Australia, have collaborated in a national initiative to establish a genetic diversity dataset representing Australian wheat germplasm based on whole genome next-generation sequencing data. Here, we describe the establishment and validation of this resource which can provide a model for broader international initiatives for the analysis of large and complex genomes.  相似文献   
107.
Detection and utilization of genetic variation available in the germplasm collection for crop improvement have been the prime activities of breeders. Here a set of ICARDA barley germplasm collection comprising of 185 cultivated (Hordeum vulgare L.) and 38 wild (H. spontaneum L.) genotypes originated from 30 countries of four continents was genotyped with 68 single nucleotide polymorphism (SNP) and 45 microsatellite or simple sequence repeat (SSR) markers derived from genes (expressed sequence tags, ESTs). As two SNP markers provided 2 and 3 datapoints, a total of 71 SNPs were surveyed that yielded a total of 143 alleles. The number of SSR alleles per locus ranged from 3 to 22 with an average of 7.9 per marker. Average PIC (polymorphism information content) value for SSR and SNP markers were recorded as 0.63 and 0.38, respectively. Heterogeneity was recorded at both SNP and SSR loci in an average of 5.72 and 12.42% accessions, respectively. Genetic similarity matrices for SSR and SNP allelic data were highly correlated (r = 0.75, P < 0.005) and therefore allelic data for both markers were combined and analyzed for understanding the genetic relationships among the germplasm surveyed. Majority of clusters/subclusters were found to contain genotypes from the same geographic origins. While comparing the genetic diversity, the accessions coming from Middle East Asia and North East Asia showed more diversity as compared to that of other geographic regions. Majority of countries representing Africa, Middle East Asia, North East Asia and Arabian Peninsula included the genotypes that contained rare alleles. As expected, spontaneum accessions, as compared to vulgare accessions, showed a higher number of total alleles, higher number of alleles per locus, higher effective number of alleles and higher allelic richness and a higher number of rare alleles were observed. In summary, the examined ICARDA germplasm set showed ample natural genetic variation that can be harnessed for future breeding of barley as climate change and sustainability have become important throughout all growing areas of the world, drought/heat tolerance being the most important ones.  相似文献   
108.
Macroautophagy requires membrane trafficking and remodelling to form the autophagosome and deliver its contents to lysosomes for degradation. We have previously identified the TBC domain‐containing protein, TBC1D14, as a negative regulator of autophagy that controls delivery of membranes from RAB11‐positive recycling endosomes to forming autophagosomes. In this study, we identify the TRAPP complex, a multi‐subunit tethering complex and GEF for RAB1, as an interactor of TBC1D14. TBC1D14 binds to the TRAPP complex via an N‐terminal 103 amino acid region, and overexpression of this region inhibits both autophagy and secretory traffic. TRAPPC8, the mammalian orthologue of a yeast autophagy‐specific TRAPP subunit, forms part of a mammalian TRAPPIII‐like complex and both this complex and TBC1D14 are needed for RAB1 activation. TRAPPC8 modulates autophagy and secretory trafficking and is required for TBC1D14 to bind TRAPPIII. Importantly, TBC1D14 and TRAPPIII regulate ATG9 trafficking independently of ULK1. We propose a model whereby TBC1D14 and TRAPPIII regulate a constitutive trafficking step from peripheral recycling endosomes to the early Golgi, maintaining the cycling pool of ATG9 required for initiation of autophagy.  相似文献   
109.
Individual dispersal,landscape connectivity and ecological networks   总被引:1,自引:0,他引:1  
Connectivity is classically considered an emergent property of landscapes encapsulating individuals' flows across space. However, its operational use requires a precise understanding of why and how organisms disperse. Such movements, and hence landscape connectivity, will obviously vary according to both organism properties and landscape features. We review whether landscape connectivity estimates could gain in both precision and generality by incorporating three fundamental outcomes of dispersal theory. Firstly, dispersal is a multi‐causal process; its restriction to an ‘escape reaction’ to environmental unsuitability is an oversimplification, as dispersing individuals can leave excellent quality habitat patches or stay in poor‐quality habitats according to the relative costs and benefits of dispersal and philopatry. Secondly, species, populations and individuals do not always react similarly to those cues that trigger dispersal, which sometimes results in contrasting dispersal strategies. Finally, dispersal is a major component of fitness and is thus under strong selective pressures, which could generate rapid adaptations of dispersal strategies. Such evolutionary responses will entail spatiotemporal variation in landscape connectivity. We thus strongly recommend the use of genetic tools to: (i) assess gene flow intensity and direction among populations in a given landscape; and (ii) accurately estimate landscape features impacting gene flow, and hence landscape connectivity. Such approaches will provide the basic data for planning corridors or stepping stones aiming at (re)connecting local populations of a given species in a given landscape. This strategy is clearly species‐ and landscape‐specific. But we suggest that the ecological network in a given landscape could be designed by stacking up such linkages designed for several species living in different ecosystems. This procedure relies on the use of umbrella species that are representative of other species living in the same ecosystem.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号