首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1400篇
  免费   122篇
  1522篇
  2023年   8篇
  2022年   18篇
  2021年   27篇
  2020年   20篇
  2019年   26篇
  2018年   23篇
  2017年   21篇
  2016年   37篇
  2015年   83篇
  2014年   90篇
  2013年   102篇
  2012年   153篇
  2011年   121篇
  2010年   115篇
  2009年   88篇
  2008年   85篇
  2007年   94篇
  2006年   90篇
  2005年   73篇
  2004年   72篇
  2003年   60篇
  2002年   61篇
  2001年   8篇
  2000年   3篇
  1999年   8篇
  1998年   9篇
  1997年   2篇
  1996年   5篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有1522条查询结果,搜索用时 0 毫秒
11.
The biopolymer lignin is deposited in the cell walls of vascular cells and is essential for long-distance water conduction and structural support in plants. Different vascular cell types contain distinct and conserved lignin chemistries, each with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry in each cell type remains unclear. Here, we investigated the roles of this lignin biochemical specificity for cellular functions by producing single cell analyses for three cell morphotypes of tracheary elements, which all allow sap conduction but differ in their morphology. We determined that specific lignin chemistries accumulate in each cell type. Moreover, lignin accumulated dynamically, increasing in quantity and changing in composition, to alter the cell wall biomechanics during cell maturation. For similar aromatic substitutions, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility of the cell wall. Modifying this lignin biochemical specificity and the sequence of its formation impaired the cell wall biomechanics of each morphotype and consequently hindered sap conduction and drought recovery. Together, our results demonstrate that each sap-conducting vascular cell type distinctly controls their lignin biochemistry to adjust their biomechanics and hydraulic properties to face developmental and environmental constraints.

During the development of each vascular cell, specific lignin chemistries control their biomechanics and water conduction properties to face environmental changes.

IN A NUTSHELL Background: Lignin comprises multiple cell wall–localized aromatic polymers that are essential for vascular plants to conduct water and strengthen their organs. It has long been thought that lignin was randomly and nonspecifically assembled to provide mechanical strengthening and waterproofing to cells by filling-up the empty spaces in the cell walls. However, the different cell types and morphotypes forming the different sap-conducting pipes and their cell wall layers (inner vs. outer layer) exhibit specific lignin chemistries that are conserved among plant species. We, therefore, investigated the function of these specific lignin chemistries at the cell and cell wall layer levels for the different sap-conducting pipes in plants. Question: What is the function of a specific lignin chemistry for the different plant sap-conducting pipe cells? Can changes in the lignin chemistry of sap-conducting cells affect their hydraulic capacity when facing environmental conditions such as drought? Findings: We answered these questions by changing lignin levels and composition, using drugs to block lignin formation, and/or genetic engineering to switch off genes, in three complementary systems: (1) isolated cells grown in test tubes that we can trigger to become sap conduits, (2) annual plants, and (3) hardwood trees. We show that lignin chemistry is specific to each cell morphotype and changes during cell maturation, modifying the amount of lignin, the chemical composition of lignin units, and the position of these units in the longer polymer. These specific lignin chemistries are required for the proper function of each cell morphotype to properly conduct the sap and strengthen plant organs. Modifying the amount, the composition, and the time when specific units with distinct chemistry are incorporated in lignin of each cell morphotype has dramatic effects, causing defects in sap conduit hydraulic and biomechanical properties. The ratio between the different chemical units of lignin needs to be fine-tuned to adjust plant sap conduction and mechanical strengthening. Thus, changes in the proportion of lignin units with distinct chemistries confer different hydraulic and mechanical properties enabling plants to better resist and/or recover from drought. We also revealed that increases in the proportion of lignin units with aldehyde modulate plant pipe hydraulic and mechanical properties. Next steps: We are now working to identify and understand the molecular mechanisms that control the formation of specific lignin chemistries in distinct sites and times during the development of the different cell wall layers in each cell type and morphotype.  相似文献   
12.
13.
Genotype and water deficit effects on leaf 2-DE protein profiles of two Populus deltoides × Populus nigra, cv. ‘Agathe_F’ and ‘Cima’, were analysed over a short-term period of 18 days in glasshouse using 4-month-old rooted cuttings and over a long-lasting period of 86 days in open field using 4-year-old rooted cuttings. Leaf proteomes were analyzed using two-dimensional gel electrophoresis, and proteins were identified after database searching from MS peptide spectra.A reliable genotype effect was observed in the leaf proteome over experiment locations, water regimes and sampling dates. Quantitative differences between genotypes were found. Most of them corresponded to proteins matching isoforms or post-translational modification variants. However, ‘Cima’ displayed the highest abundance of antioxidant enzymes.In response to water deficit, about 10% of the reproducible spots significantly varied regardless of the experiment location, among which about 25% also displayed genotype-dependent variations. As a whole, while ‘Cima’ differed from ‘Agathe_F’ by increased abundance of enzymes involved in photorespiration and in oxidative stress, ‘Agathe_F’ was mainly differentiated by increased abundance of enzymes involved in photosynthesis.  相似文献   
14.
The discovery of autosomal dominant hypercholesterolemic patients with mutations in the PCSK9 gene, encoding the proprotein convertase NARC-1, resulting in the missense mutations suggested a role in low density lipoprotein (LDL) metabolism. We show that the endoplasmic reticulum-localized proNARC-1 to NARC-1 zymogen conversion is Ca2+-independent and that within the zymogen autocatalytic processing site SSVFAQ [downward arrow]SIP Val at P4 and Pro at P3' are critical. The S127R and D374Y mutations result in approximately 50-60% and > or =98% decrease in zymogen processing, respectively. In contrast, the double [D374Y + N157K], F216L, and R218S natural mutants resulted in normal zymogen processing. The cell surface LDL receptor (LDLR) levels are reduced by 35% in lymphoblasts of S127R patients. The LDLR levels are also reduced in stable HepG2 cells overexpressing NARC-1 or its natural mutant S127R, and this reduction is abrogated in the presence of 5 mm ammonium chloride, suggesting that overexpression of NARC-1 increases the turnover rate of the LDLR. Adenoviral expression of wild type human NARC-1 in mice resulted in a maximal approximately 9-fold increase in circulating LDL cholesterol, while in LDLR-/- mice a delayed approximately 2-fold increase in LDL cholesterol was observed. In conclusion, NARC-1 seems to affect both the level of LDLR and that of circulating apoB-containing lipoproteins in an LDLR-dependent and -independent fashion.  相似文献   
15.
The most widely studied pathway underlying agonist-promoted internalization of G protein-coupled receptors (GPCRs) involves beta-arrestin and clathrin-coated pits. However, both beta-arrestin- and clathrin-independent processes have also been reported. Classically, the endocytic routes are characterized using pharmacological inhibitors and various dominant negative mutants, resulting sometimes in conflicting results and interpretational difficulties. Here, taking advantage of the fact that beta-arrestin binding to the beta2 subunit of the clathrin adaptor AP-2 (beta2-adaptin) is needed for the beta-arrestin-mediated targeting of GPCRs to clathrin-coated pits, we developed a bioluminescence resonance energy transfer-based approach directly assessing the molecular steps involved in the endocytosis of GPCRs in living cells. For 10 of the 12 receptors tested, including some that were previously suggested to internalize via clathrin-independent pathways, agonist stimulation promoted beta-arrestin 1 and 2 interaction with beta2-adaptin, indicating a beta-arrestin- and clathrin-dependent endocytic process. Detailed analyses of beta-arrestin interactions with both the receptor and beta2-adaptin also allowed us to demonstrate that recruitment of beta-arrestins to the receptor and the ensuing conformational changes are the leading events preceding AP-2 engagement and subsequent clathrin-mediated endocytosis. Among the receptors tested, only the endothelin A and B receptors failed to promote interaction between beta-arrestins and beta2-adaptin. However, both receptors recruited beta-arrestins upon agonist stimulation, suggesting a beta-arrestin-dependent but clathrin-independent route of internalization for these two receptors. In addition to providing a new tool to dissect the molecular events involved in GPCR endocytosis, the bioluminescence resonance energy transfer-based beta-arrestin/beta2-adaptin interaction assay represents a novel biosensor to assess receptor activation.  相似文献   
16.
Recent studies have shown that surfactant components, in particular the collectins surfactant protein (SP)-A and -D, modulate the phagocytosis of various pathogens by alveolar macrophages. This interaction might be important not only for the elimination of pathogens but also for the elimination of inhaled allergens and might explain anti-inflammatory effects of SP-A and SP-D in allergic airway inflammation. We investigated the effect of surfactant components on the phagocytosis of allergen-containing pollen starch granules (PSG) by alveolar macrophages. PSG were isolated from Dactylis glomerata or Phleum pratense, two common grass pollen allergens, and incubated with either rat or human alveolar macrophages in the presence of recombinant human SP-A, SP-A purified from patients suffering from alveolar proteinosis, a recombinant fragment of human SP-D, dodecameric recombinant rat SP-D, or the commercially available surfactant preparations Curosurf and Alveofact. Dodecameric rat recombinant SP-D enhanced binding and phagocytosis of the PSG by alveolar macrophages, whereas the recombinant fragment of human SP-D, SP-A, or the surfactant lipid preparations had no effect. In addition, recombinant rat SP-D bound to the surface of the PSG and induced aggregation. Binding, aggregation, and enhancement of phagocytosis by recombinant rat SP-D was completely blocked by EDTA and inhibited by d-maltose and to a lesser extent by d-galactose, indicating the involvement of the carbohydrate recognition domain of SP-D in these functions. The modulation of allergen phagocytosis by SP-D might play an important role in allergen clearance from the lung and thereby modulate the allergic inflammation of asthma.  相似文献   
17.
In this study, proteomics and metabolomics were used to study the wheat response to exposure to the SnToxA effector protein secreted by the fungal pathogen Stagonospora nodorum during infection. Ninety-one different acidic and basic proteins and 101 metabolites were differentially abundant when comparing SnToxA- and control-treated wheat leaves during a 72-h time course. Proteins involved in photosynthesis were observed to increase marginally initially after exposure, before decreasing rapidly and significantly. Proteins and metabolites associated with the detoxification of reactive oxygen species in the chloroplast were also differentially abundant during SnToxA exposure, implying that the disruption of photosynthesis causes the rapid accumulation of chloroplastic reactive oxygen species. Metabolite profiling revealed major metabolic perturbations in central carbon metabolism, evidenced by significant increases in tricarboxylic acid (TCA) cycle intermediates, suggestive of an attempt by the plant to generate ATP and reducing equivalents in response to the collapse of photosynthesis caused by SnToxA. This was supported by the observation that the TCA cycle enzyme malate dehydrogenase was up-regulated in response to SnToxA. The infiltration of SnToxA also resulted in a significant increase in abundance of many pathogenicity-related proteins, even in the absence of the pathogen or other pathogen-associated molecular patterns. This approach highlights the complementary nature of proteomics and metabolomics in studying effector-host interactions, and provides further support for the hypothesis that necrotrophic pathogens, such as S. nodorum, appear to exploit existing host cell death mechanisms to promote pathogen growth and cause disease.  相似文献   
18.
19.
20.
Medicago truncatula is used as a model plant for exploring the genetic and molecular determinants of nitrogen (N) nutrition in legumes. In this study, our aim was to detect quantitative trait loci (QTL) controlling plant N nutrition using a simple framework of carbon/N plant functioning stemming from crop physiology. This framework was based on efficiency variables which delineated the plant’s efficiency to take up and process carbon and N resources. A recombinant inbred line population (LR4) was grown in a glasshouse experiment under two contrasting nitrate concentrations. At low nitrate, symbiotic N2 fixation was the main N source for plant growth and a QTL with a large effect located on linkage group (LG) 8 affected all the traits. Significantly, efficiency variables were necessary both to precisely localize a second QTL on LG5 and to detect a third QTL involved in epistatic interactions on LG2. At high nitrate, nitrate assimilation was the main N source and a larger number of QTL with weaker effects were identified compared to low nitrate. Only two QTL were common to both nitrate treatments: a QTL of belowground biomass located at the bottom of LG3 and another one on LG6 related to three different variables (leaf area, specific N uptake and aboveground:belowground biomass ratio). Possible functions of several candidate genes underlying QTL of efficiency variables could be proposed. Altogether, our results provided new insights into the genetic control of N nutrition in M. truncatula. For instance, a novel result for M. truncatula was identification of two epistatic interactions in controlling plant N2 fixation. As such this study showed the value of a simple conceptual framework based on efficiency variables for studying genetic determinants of complex traits and particularly epistatic interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号