首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1357篇
  免费   117篇
  2023年   8篇
  2022年   18篇
  2021年   27篇
  2020年   20篇
  2019年   23篇
  2018年   23篇
  2017年   21篇
  2016年   37篇
  2015年   80篇
  2014年   87篇
  2013年   97篇
  2012年   150篇
  2011年   119篇
  2010年   112篇
  2009年   82篇
  2008年   84篇
  2007年   93篇
  2006年   90篇
  2005年   70篇
  2004年   72篇
  2003年   57篇
  2002年   60篇
  2001年   7篇
  2000年   3篇
  1999年   8篇
  1998年   9篇
  1997年   2篇
  1996年   5篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
排序方式: 共有1474条查询结果,搜索用时 31 毫秒
961.
Mutations in the SEPN1 gene encoding the selenoprotein N (SelN) have been described in different congenital myopathies. Here, we report the first mutation in the selenocysteine insertion sequence (SECIS) of SelN messenger RNA, a hairpin structure located in the 3' untranslated region, in a patient presenting a classical although mild form of rigid spine muscular dystrophy. We detected a significant reduction in both mRNA and protein levels in the patient's skin fibroblasts. The SECIS element is crucial for the insertion of selenocysteine at the reprogrammed UGA codon by recruiting the SECIS-binding protein 2 (SBP2), and we demonstrated that this mutation abolishes SBP2 binding to SECIS in vitro, thereby preventing co-translational incorporation of selenocysteine and SelN synthesis. The identification of this mutation affecting a conserved base in the SECIS functional motif thereby reveals the structural basis for a novel pathological mechanism leading to SEPN1-related myopathy.  相似文献   
962.
963.
Flagellin, the main building block of the bacterial flagellum, acts as a pathogen-associated molecular pattern triggering the innate immune response in animals and plants. In Arabidopsis thaliana, the Leu-rich repeat transmembrane receptor kinase FLAGELLIN SENSITIVE2 (FLS2) is essential for flagellin perception. Here, we demonstrate the specific interaction of the elicitor-active epitope flg22 with the FLS2 protein by chemical cross-linking and immunoprecipitation. The functionality of this receptor was further tested by heterologous expression of the Arabidopsis FLS2 gene in tomato (Lycopersicon esculentum) cells. The perception of flg22 in tomato differs characteristically from that in Arabidopsis. Expression of Arabidopsis FLS2 conferred an additional flg22-perception system on the cells of tomato, which showed all of the properties characteristic of the perception of this elicitor in Arabidopsis. In summary, these results show that FLS2 constitutes the pattern-recognition receptor that determines the specificity of flagellin perception.  相似文献   
964.
The aim of this study was to investigate the in vitro degradation of hydroxyl ethyl methacrylated dextran (dex-HEMA) microspheres. Dextran microspheres were incubated in phosphate buffer pH 7.4 at 37 degrees C, and the dry mass, mechanical strength, and chemical composition of the microspheres were monitored in time. The amount and nature of the formed degradation products were established for microspheres with different cross-link densities by FT-IR (Fourier transformed infrared spectroscopy), NMR, mass spectrometry, SEC analysis, and XPS (X-ray photoelectron microscopy). The dex-HEMA microspheres DS 12 (degree of HEMA substitution; the number of HEMA groups per 100 glucose units) incubated at pH 7.4 and 37 degrees C showed a continuous mass loss, leaving after 6 months a residue of about 10% (w/w) of water-insoluble products. NMR, mass spectrometry, and SEC showed that the water-soluble degradation products consisted of dextran, low molecular weight pHEMA (M(n) approximately 15 kg/mol), and small amounts of unreacted HEMA and HEMA-DMAP (intermediate reaction product of the Baylis-Hillman reaction of HEMA with DMAP (4-dimethyl aminopyridine)). Microscopy revealed that the water-insoluble residue consisted of particles with shape and size similar to that of nondegraded microspheres. However, these particles had lost their mechanical strength as evidenced from micromanipulation experiments. FT-IR and XPS (X-ray photoelectron microscopy) revealed that these particles consisted of pHEMA, of which a small fraction was soluble in methanol (M(n) ranging between 27 and 82 kg/mol). The insoluble material likely consisted of lightly cross-linked pHEMA. In conclusion, in vitro degradation of dex-HEMA microspheres results in the formation of water-soluble degradation products (mainly dextran), leaving a small water-insoluble residue mainly consisting of pHEMA.  相似文献   
965.
966.
967.
Tension wood is widespread in the organs of woody plants. During its formation, it generates a large tensile mechanical stress, called maturation stress. Maturation stress performs essential biomechanical functions such as optimizing the mechanical resistance of the stem, performing adaptive movements, and ensuring long-term stability of growing plants. Although various hypotheses have recently been proposed, the mechanism generating maturation stress is not yet fully understood. In order to discriminate between these hypotheses, we investigated structural changes in cellulose microfibrils along sequences of xylem cell differentiation in tension and normal wood of poplar (Populus deltoides × Populus trichocarpa ‘I45-51’). Synchrotron radiation microdiffraction was used to measure the evolution of the angle and lattice spacing of crystalline cellulose associated with the deposition of successive cell wall layers. Profiles of normal and tension wood were very similar in early development stages corresponding to the formation of the S1 and the outer part of the S2 layer. The microfibril angle in the S2 layer was found to be lower in its inner part than in its outer part, especially in tension wood. In tension wood only, this decrease occurred together with an increase in cellulose lattice spacing, and this happened before the G-layer was visible. The relative increase in lattice spacing was found close to the usual value of maturation strains, strongly suggesting that microfibrils of this layer are put into tension and contribute to the generation of maturation stress.Wood cells are produced in the cambium at the periphery of the stem. The formation of the secondary wall occurs at the end of cell elongation by the deposition of successive layers made of cellulose microfibrils bounded by an amorphous polymeric matrix. Each layer has a specific chemical composition and is characterized by a particular orientation of the microfibrils relative to the cell axis (Mellerowicz and Sundberg, 2008). Microfibrils are made of crystalline cellulose and are by far the stiffest constituent of the cell wall. The microfibril angle (MFA) in each layer is determinant for cell wall architecture and wood mechanical properties.During the formation of wood cells, a mechanical stress of a large magnitude, known as “maturation stress” or “growth stress” (Archer, 1986; Fournier et al., 1991), occurs in the cell walls. This stress fulfills essential biomechanical functions for the tree. It compensates for the comparatively low compressive strength of wood and thus improves the stem resistance against bending loads. It also provides the tree with a motor system (Moulia et al., 2006), necessary to maintain the stem at a constant angle during growth (Alméras and Fournier, 2009) or to achieve adaptive reorientations. In angiosperms, a large tensile maturation stress is generated by a specialized tissue called “tension wood.” In poplar (Populus deltoides × Populus trichocarpa), as in most temperate tree species, tension wood fibers are characterized by the presence of a specific layer, called the G-layer (Jourez et al., 2001; Fang et al., 2008), where the matrix is almost devoid of lignin (Pilate et al., 2004) and the microfibrils are oriented parallel to the fiber axis (Fujita et al., 1974). This type of reaction cell is common in plant organs whose function involves the bending or contraction of axes, such as tendrils, twining vines (Bowling and Vaughn, 2009), or roots (Fisher, 2008).The mechanism at the origin of tensile maturation stress has been the subject of a lot of controversy and is still not fully understood. However, several recent publications have greatly improved our knowledge about the ultrastructure, chemical composition, molecular activity, mechanical state, and behavior of tension wood. Different models have been proposed and discussed to explain the origin of maturation stress (Boyd, 1972; Bamber, 1987, 2001; Okuyama et al., 1994, 1995; Yamamoto, 1998, 2004; Alméras et al., 2005, 2006; Bowling and Vaughn, 2008; Goswami et al., 2008; Mellerowicz et al., 2008). The specific organization of the G-layer suggests a tensile force induced in the microfibrils during the maturation process. Different hypotheses have been proposed to explain this mechanism, such as the contraction of amorphous zones within the cellulose microfibrils (Yamamoto, 2004), the action of xyloglucans during the formation of microfibril aggregates (Nishikubo et al., 2007; Mellerowicz et al., 2008), and the effect of changes in moisture content stimulated by pectin-like substances (Bowling and Vaughn, 2008). A recent work (Goswami et al., 2008) argued an alternative model, initially proposed by Münch (1938), which proposed that the maturation stress originates in the swelling of the G-layer during cell maturation and is transmitted to the adjacent secondary layers, where the larger MFAs allow an efficient conversion of lateral stress into axial tensile stress. Although the proposed mechanism is not consistent with the known hygroscopic behavior of tension wood, which shrinks when it dries and not when it takes up water (Clair and Thibaut, 2001; Fang et al., 2007; Clair et al., 2008), this hypothesis focused attention on the possible role of cell wall layers other than the G-layer. As a matter of fact, many types of wood fibers lacking a G-layer are known to produce axial tensile stress, such as normal wood of angiosperms and conifers (Archer, 1986) and the tension wood of many tropical species (Onaka, 1949; Clair et al., 2006b; Ruelle et al., 2007), so that mechanisms strictly based on an action of the G-layer cannot provide a general explanation for the origin of tensile maturation stress in wood.In order to further understanding, direct observations of the mechanical state of the different cell wall layers and their evolution during the formation of the tension wood fibers are needed. X-ray diffraction can be used to investigate the orientation of microfibrils (Cave, 1966, 1997a, 1997b; Peura et al., 2007, 2008a, 2008b) and the lattice spacing of crystalline cellulose. The axial lattice spacing d004 is the distance between successive monomers along a cellulose microfibril and reflects its state of mechanical stress (Clair et al., 2006a; Peura et al., 2007). If cellulose microfibrils indeed support a tensile stress, they should be found in an extended state of deformation. Under this assumption, the progressive development of maturation stress during the cell wall formation should be accompanied by an increase in cellulose lattice spacing. Synchrotron radiation allows a reduction in the size of the x-ray beam to some micrometers while retaining a strong signal, whereby diffraction analysis can be performed at a very local scale (Riekel, 2000). This technique has been used to study sequences of wood cell development (Hori et al., 2000; Müller et al., 2002). In this study, we report an experiment where a microbeam was used to analyze the structural changes of cellulose in the cell wall layers of tension wood and normal wood fibers along the sequence of xylem cell differentiation extending from the cambium to mature wood (Fig. 1). The experiment was designed to make this measurement in planta, in order to minimize sources of mechanical disturbance and be as close as possible to the native mechanical state (Clair et al., 2006a). The 200 and 004 diffraction patterns of cellulose were analyzed to investigate the process of maturation stress generation in tension wood.Open in a separate windowFigure 1.Schematic of the experimental setup, showing the x-ray beam passing perpendicular to the longitudinal-radial plane of wood and the contribution of the 004 and 200 crystal planes to the diffraction pattern recorded by the camera. [See online article for color version of this figure.]  相似文献   
968.
969.
N-Glycans attached to the ectodomains of plasma membrane pattern recognition receptors constitute likely initial contact sites between plant cells and invading pathogens. To assess the role of N-glycans in receptor-mediated immune responses, we investigated the functionality of Arabidopsis receptor kinases EFR and FLS2, sensing bacterial translation elongation factor Tu (elf18) and flagellin (flg22), respectively, in N-glycosylation mutants. As revealed by binding and responses to elf18 or flg22, both receptors tolerated immature N-glycans induced by mutations in various Golgi modification steps. EFR was specifically impaired by loss-of-function mutations in STT3A, a subunit of the endoplasmic reticulum resident oligosaccharyltransferase complex. FLS2 tolerated mild underglycosylation occurring in stt3a but was sensitive to severe underglycosylation induced by tunicamycin treatment. EFR accumulation was significantly reduced when synthesized without N-glycans but to lesser extent when underglycosylated in stt3a or mutated in single amino acid positions. Interestingly, EFRN143Q lacking a single conserved N-glycosylation site from the EFR ectodomain accumulated to reduced levels and lost the ability to bind its ligand and to mediate elf18-elicited oxidative burst. However, EFR-YFP protein localization and peptide:N-glycosidase F digestion assays support that both EFR produced in stt3a and EFRN143Q in wild type cells correctly targeted to the plasma membrane via the Golgi apparatus. These results indicate that a single N-glycan plays a critical role for receptor abundance and ligand recognition during plant-pathogen interactions at the cell surface.  相似文献   
970.
North Western European populations of White Storks (Ciconia ciconia) appear to have been saved from extinction by settling, i.e. stopping migration. Settled storks exposed to winter conditions must cope with periods of potentially high energy demands that would otherwise be avoided by the migration process. Doubly labeled water (DLW) was therefore used to examine the seasonal variation (summer vs winter) in daily energy expenditure (DEE) and the body composition of adult and immature storks of both sexes. Male White Storks showed a higher DEE over the winter period than in summer compared with females; in particular, immature males exhibited greater energy expenditure in winter than adult males. Thus, the DEE did not significantly differ between summer and winter (except for immature males), reflecting an absence of thermoregulation cost in winter. For both age classes, total body mass increased in winter, which was mainly due to an increase in fat mass. Adult storks were 5% heavier than immature storks. The sexes differed in body mass, with males weighing significantly more than females by 11%. Mean LBM (lean body mass) was 8.5% higher in adults than in immatures, and was 11.5% higher in males compared with females. Between their first and second summers, immatures accumulated a lean body mass to finally reach the same values as adults, indicating a phase of muscle development. The mean fat mass of the storks did not differ between age classes or between sexes. Based on physiological parameters, this study shows that settled White Storks are able to cope with mild winter periods when they are artificially provided with food. In a view to preserve favourable habitats for this species, it is therefore necessary to decide on a plan of action for breeding areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号