首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1400篇
  免费   123篇
  2023年   8篇
  2022年   11篇
  2021年   30篇
  2020年   20篇
  2019年   24篇
  2018年   26篇
  2017年   23篇
  2016年   43篇
  2015年   85篇
  2014年   91篇
  2013年   103篇
  2012年   154篇
  2011年   121篇
  2010年   114篇
  2009年   84篇
  2008年   88篇
  2007年   94篇
  2006年   92篇
  2005年   72篇
  2004年   74篇
  2003年   57篇
  2002年   60篇
  2001年   10篇
  2000年   3篇
  1999年   8篇
  1998年   9篇
  1997年   2篇
  1996年   7篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
排序方式: 共有1523条查询结果,搜索用时 31 毫秒
131.
Mast cells play a key role in allergy and asthma. They reside at the host-environment interface and are among the first cells to make contact with inhaled microorganisms and particulate antigens. Pulmonary surfactant proteins A and D (SP-A and SP-D) function in lung host defense by enhancing microbe phagocytosis and mediating other immune cell functions, but little is known about their effects on mast cells. We hypothesized that SP-A and/or SP-D modulate IgE-dependent mast cell functions. Pollen starch granules (PSG) extracted from Dactylis glomerata and coated with trinitrophenol (TNP) were used as a model of an inhaled organic particulate allergen. Our data revealed that SP-D inhibited by 50% the release of beta-hexosaminidase by peritoneal mast cells sensitized with IgE anti-TNP and stimulated with TNP-PSG. In contrast, SP-A had no effect. Furthermore, SP-D aggregated PSG in a dose-dependent manner, and this aggregation was mediated by SP-D's carbohydrate recognition domain. A single arm SP-D mutant (RrSP-Dser15,20) neither aggregated PSG nor inhibited degranulation, suggesting that multimerization of SP-D is required for maximal PSG aggregation and inhibition of PSG-induced mast cell degranulation. This study is the first to demonstrate that SP-D modulates IgE-mediated mast cell functions, which are important in asthma and allergic inflammation.  相似文献   
132.
Recent studies have shown that surfactant components, in particular the collectins surfactant protein (SP)-A and -D, modulate the phagocytosis of various pathogens by alveolar macrophages. This interaction might be important not only for the elimination of pathogens but also for the elimination of inhaled allergens and might explain anti-inflammatory effects of SP-A and SP-D in allergic airway inflammation. We investigated the effect of surfactant components on the phagocytosis of allergen-containing pollen starch granules (PSG) by alveolar macrophages. PSG were isolated from Dactylis glomerata or Phleum pratense, two common grass pollen allergens, and incubated with either rat or human alveolar macrophages in the presence of recombinant human SP-A, SP-A purified from patients suffering from alveolar proteinosis, a recombinant fragment of human SP-D, dodecameric recombinant rat SP-D, or the commercially available surfactant preparations Curosurf and Alveofact. Dodecameric rat recombinant SP-D enhanced binding and phagocytosis of the PSG by alveolar macrophages, whereas the recombinant fragment of human SP-D, SP-A, or the surfactant lipid preparations had no effect. In addition, recombinant rat SP-D bound to the surface of the PSG and induced aggregation. Binding, aggregation, and enhancement of phagocytosis by recombinant rat SP-D was completely blocked by EDTA and inhibited by d-maltose and to a lesser extent by d-galactose, indicating the involvement of the carbohydrate recognition domain of SP-D in these functions. The modulation of allergen phagocytosis by SP-D might play an important role in allergen clearance from the lung and thereby modulate the allergic inflammation of asthma.  相似文献   
133.
BACKGROUND: The identification of novel proteins displaying cytostatic and/or cytotoxic actions that could eventually be used for gene therapy is a major issue in cancer research. Data from the literature suggested that the immediate-early ICP0 protein from herpes simplex virus type 1 (HSV-1) could fulfill these properties as it had been observed that this protein is involved in arrest of cell growth at the G1/S and G2/M phases of the cell cycle and that deletion of ICP0 from HSV-1 or HSV-1-recombinant vectors significantly reduced their cytotoxicity. The molecular basis of its action is likely related to the ability of ICP0, which possesses E3-ubiquitin ligase activity, to target destruction of key cellular proteins, including centromeric proteins, resulting in abnormal chromosome segregation, unusual cytokinesis, and emergence of nuclear morphological aberrations. However, neither the gene therapy potential of ICP0 on its own nor its action on primary quiescent cells has been assessed to date. The aim of this work was therefore to evaluate the antiproliferative and cytotoxic properties of ICP0 on a human glioblastoma cell line and on quiescent primary cells, and to explore whether this protein has a potential for gene therapy of cancer. METHODS: HSV-1-based amplicon particles were generated following a recently described method that produces relatively high titers of vector stocks that are essentially free of helper virus. These vectors express either wild-type ICP0 or FXE, a RING finger mutated inactive form of ICP0, together with reporter green fluorescent protein (GFP). The vectors were used to infect Gli36 cells, which derive from a human glioblastome, and cultured rat primary cardiomyocytes and brain cells, two well-established models of non-dividing cells. Expression and localization of ICP0 and FXE, as well as their action on centromeres and nuclear morphology, were evaluated by Western blotting, indirect immune fluorescence, and confocal microscopy using specific antibodies and DAPI labeling. The impact of ICP0 on cell growth, toxicity, and viability was evaluated in the different cells using a variety of methods, including FACS analysis after propidium iodide and AnnexinV staining, crystal violet staining, clonogenic capability, caspase 3 activation, MTT tests, and release of lactate dehydrogenase, after infection with the different vectors. RESULTS: The three cell types under study showed high levels of transduction by amplicons and strong expression of GFP, ICP0, and FXE transgenic proteins. Wild-type ICP0, but not FXE, induced centromeric disruption, appearance of micronuclei, arrest of proliferation, and significant cell death in glioblastoma Gli36 cells. In contrast, neither micronuclei formation nor any other sign of cell toxicity could be observed in cultured primary cardiomyocytes or brain cells, as evaluated by MTT tests and crystal violet staining. Furthermore, in the case of cardiomyocytes, expression of ICP0 did not interfere with beating as cells continued to beat at the same frequency as non-infected cells for several days post-infection. Neither AnnexinV early staining nor caspase 3 activation was observed in dying infected Gli36 cells, suggesting that these cells were not entering apoptosis. In contrast, release of lactate dehydrogenase by infected Gli36 cells suggested a necrotic way of death. CONCLUSIONS: ICP0 induced a strong cytostatic action followed by significant cell death on the glioblastoma Gli36 cell line. In contrast, neither cell death nor any other evidence of ICP0-induced toxicity affecting major physiological parameters was observed in primary cultured cardiomyoctes and brain cells, two models of primary non-cycling cells. These results suggest that ICP0 has gene therapy potential and could represent the first member of a novel family of directly acting proteins that could be used to treat cancers.  相似文献   
134.
The Open Microscopy Environment (OME) defines a data model and a software implementation to serve as an informatics framework for imaging in biological microscopy experiments, including representation of acquisition parameters, annotations and image analysis results. OME is designed to support high-content cell-based screening as well as traditional image analysis applications. The OME Data Model, expressed in Extensible Markup Language (XML) and realized in a traditional database, is both extensible and self-describing, allowing it to meet emerging imaging and analysis needs.  相似文献   
135.
Combined evidence annotation of transposable elements in genome sequences   总被引:1,自引:0,他引:1  
Transposable elements (TEs) are mobile, repetitive sequences that make up significant fractions of metazoan genomes. Despite their near ubiquity and importance in genome and chromosome biology, most efforts to annotate TEs in genome sequences rely on the results of a single computational program, RepeatMasker. In contrast, recent advances in gene annotation indicate that high-quality gene models can be produced from combining multiple independent sources of computational evidence. To elevate the quality of TE annotations to a level comparable to that of gene models, we have developed a combined evidence-model TE annotation pipeline, analogous to systems used for gene annotation, by integrating results from multiple homology-based and de novo TE identification methods. As proof of principle, we have annotated "TE models" in Drosophila melanogaster Release 4 genomic sequences using the combined computational evidence derived from RepeatMasker, BLASTER, TBLASTX, all-by-all BLASTN, RECON, TE-HMM and the previous Release 3.1 annotation. Our system is designed for use with the Apollo genome annotation tool, allowing automatic results to be curated manually to produce reliable annotations. The euchromatic TE fraction of D. melanogaster is now estimated at 5.3% (cf. 3.86% in Release 3.1), and we found a substantially higher number of TEs (n = 6,013) than previously identified (n = 1,572). Most of the new TEs derive from small fragments of a few hundred nucleotides long and highly abundant families not previously annotated (e.g., INE-1). We also estimated that 518 TE copies (8.6%) are inserted into at least one other TE, forming a nest of elements. The pipeline allows rapid and thorough annotation of even the most complex TE models, including highly deleted and/or nested elements such as those often found in heterochromatic sequences. Our pipeline can be easily adapted to other genome sequences, such as those of the D. melanogaster heterochromatin or other species in the genus Drosophila.  相似文献   
136.
The proteome and secretome of human arterial smooth muscle cells   总被引:6,自引:0,他引:6  
Smooth muscle cells (SMCs) play a crucial role in cardiovascular disorders. A differential proteomic approach should help to elucidate SMC dysfunctions involved in these diseases. With this goal in mind, we plotted the first 2-dimensional (2-D) maps of the proteome and secretome of human arterial smooth muscle cell (ASMC). Intracellular and secreted proteins were extracted from a primary culture of SMCs obtained from patients undergoing coronary artery bypass surgery (n = 11) and separated by 2-dimensional gel electrophoresis. Silver-stained gels were analyzed using Progenesis software. A high level of between-gel reproducibility was obtained, allowing us to generate two protein patterns specific to the ASMC proteome and secretome, respectively. A total of 121 and 40 distinct intracellular and secreted polypeptide spots, corresponding to 83 and 18 different proteins, respectively, were identified by matrix-assisted laser desorption/ionization mass spectrometry. The 2-D reference maps and database resulting from this study confirm that SMCs are involved in a wide range of biological functions. They could constitute a useful tool for a wide range of investigators involved in vascular biology, allowing them to investigate SMC protein changes associated with cardiovascular disorders or environmental stimuli.  相似文献   
137.
138.
139.
Allergic pathologies are often associated with IgE production, mast cell activation, and eosinophilia. PGD2 is the major eicosanoid, among several inflammatory mediators, released by mast cells. PGD2 binds to two membrane receptors, D prostanoid receptor (DP)1 and DP2, endowed with antagonistic properties. In humans, DP2 is preferentially expressed on type 2 lymphocytes, eosinophils, and basophils and mediates chemotaxis in vitro. Although not yet supported by in vivo studies, DP2 is thought to be important in the promotion of Th2-related inflammation. Herein, we demonstrate that mouse eosinophils express both DP1 and DP2 and that PGD2 exerts in vitro chemotactic effects on eosinophils through DP2 activation. Furthermore, 13,14-dihydro-15-keto-PGD2, a specific DP2 agonist not only increases eosinophil recruitment at inflammatory sites but also the pathology in two in vivo models of allergic inflammation: atopic dermatitis and allergic asthma. By contrast, DP1 activation tends to ameliorate the pathology in asthma. Taken together, these results support the hypothesis that DP2 might play a critical role in allergic diseases and underline the interest of DP2 antagonists in human therapy.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号