首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1348篇
  免费   146篇
  2022年   10篇
  2021年   12篇
  2020年   16篇
  2019年   13篇
  2018年   12篇
  2017年   25篇
  2016年   26篇
  2015年   45篇
  2014年   40篇
  2013年   52篇
  2012年   71篇
  2011年   66篇
  2010年   39篇
  2009年   34篇
  2008年   44篇
  2007年   29篇
  2006年   48篇
  2005年   44篇
  2004年   47篇
  2003年   46篇
  2002年   38篇
  2001年   60篇
  2000年   49篇
  1999年   36篇
  1998年   10篇
  1996年   21篇
  1995年   13篇
  1994年   18篇
  1993年   11篇
  1992年   26篇
  1991年   31篇
  1990年   29篇
  1989年   27篇
  1988年   27篇
  1987年   35篇
  1986年   20篇
  1985年   21篇
  1984年   25篇
  1983年   14篇
  1982年   15篇
  1981年   14篇
  1979年   17篇
  1978年   17篇
  1977年   19篇
  1975年   12篇
  1974年   9篇
  1973年   14篇
  1971年   10篇
  1967年   10篇
  1966年   10篇
排序方式: 共有1494条查询结果,搜索用时 31 毫秒
121.
Class resistance to beta-lactam antibiotics in Gram-positive bacteria is mediated by structural changes in transpeptidase penicillin-binding proteins. These structural changes render a complex series of interactions between antibiotic and protein that are energetically unfavorable, such that the active site is inactivated not at all or too slowly to prevent cell-wall synthesis and bacterial growth. Determination of the crystal structure of the low-affinity penicillin-binding protein PBP2a, which mediates beta-lactam antibiotic resistance in staphylococci, has identified the molecular structures and interactions that are responsible for resistance. This information could be useful for designing beta-lactams to overcome these structural impediments, as well as resistance.  相似文献   
122.
Osteoclast formation is dependent on the ability of TGF-beta to enable receptor activator of NF-kappaB ligand (RANKL)-induced commitment of hemopoietic precursors to the osteoclastic lineage. The mechanism by which TGF-beta enables formation is unknown. One possibility is that TGF-beta opposes Janus kinase (JAK)/STAT signals generated by inhibitory cytokines such as IFN-beta. The JAK/STAT pathway is activated by cytokines that induce resistance to osteoclast formation, such as IFN-gamma and M-CSF, and the effect of these is opposed by TGF-beta. Recently, a group of STAT-induced factors, termed suppressors of cytokine signaling (SOCS), has been identified that inhibit JAK/STAT signals. Therefore, we tested the ability of TGF-beta to induce SOCS expression in osteoclast precursors and examined the effect of SOCS expression on osteoclast/macrophage lineage commitment. We found that while SOCS mRNA is undetectable in macrophages, osteoclasts express SOCS-3, and TGF-beta up-regulates this expression. Furthermore, TGF-beta rapidly induces sustained SOCS-3 expression in macrophage/osteoclast precursors. To determine whether SOCS-3 plays a role in osteoclast differentiation we expressed SOCS-3 in precursors using a retroviral system. We found that osteoclast differentiation was significantly enhanced in SOCS-3-infected precursors, and SOCS-3 expression enables formation in the presence of anti-TGF-beta Ab. On the other hand, antisense knockdown of SOCS-3 strongly suppressed osteoclast formation and significantly blunted the response to TGF-beta. Moreover, like TGF-beta, SOCS-3 expression opposed the inhibitory effect of IFN-beta. These data suggest that TGF-beta-induced expression of SOCS-3 may represent a mechanism by which TGF-beta suppresses inhibitory cytokine signaling, priming precursors for a role in bone resorption.  相似文献   
123.
124.
Embryonic stem cells are established directly from the pluripotent epiblast of the preimplantation mouse embryo. Their derivation and propagation are dependent upon cytokine-stimulated activation of gp130 signal transduction. Embryonic stem cells maintain a close resemblance to epiblast in developmental potency and gene expression profile. The presumption of equivalence between embryonic stem cells and epiblast is challenged, however, by the finding that early embryogenesis can proceed in the absence of gp130. To explore this issue further, we have examined the capacity of gp130 mutant embryos to accommodate perturbation of normal developmental progression. Mouse embryos arrest at the late blastocyst stage when implantation is prevented. This process of diapause occurs naturally in lactating females or can be induced experimentally by removal of the ovaries. We report that gp130(-/-) embryos survive unimplanted in the uterus after ovariectomy but, in contrast to wild-type or heterozygous embryos, are subsequently unable to resume development. Inner cell masses explanted from gp130(-/-) delayed blastocysts produce only parietal endoderm, a derivative of the hypoblast. Intact mutant embryos show an absence of epiblast cells, and Hoechst staining and TUNEL analysis reveal a preceding increased incidence of cell death. These findings establish that gp130 signalling is essential for the prolonged maintenance of epiblast in vivo, which is commonly required of mouse embryos in the wild. We propose that the responsiveness of embryonic stem cells to gp130 signalling has its origin in this adaptive physiological function.  相似文献   
125.
Chambers D 《Genome biology》2001,2(4):reports4010.1-reports40103
A report on the 'Integration of Signaling Pathways in Development' Keystone Symposium, Keystone, Colorado, USA, 27 January to 1 February 2001.  相似文献   
126.
Osteopontin (OPN) is a secreted and integrin-binding protein that has been implicated in a number of pathologies. In this review we will focus on the functional and clinical roles of OPN in cancer and metastasis, with a particular emphasis on breast cancer. While much evidence has suggested that OPN is associated with cancer, its functional contribution to cancer remains poorly understood. Here we will review evidence for mechanisms by which OPN may act to enhance malignancy, including evidence that signaling pathways directly induced by OPN, as well as interactions with growth factor receptor pathways, can combine to activate expression of genes and functions that contribute to metastasis. OPN has been shown to be over-expressed in a variety of human tumors and is present in elevated levels in the blood of some patients with metastatic cancers. We also will discuss recent clinical evidence that suggests that OPN is not only associated with several tumor types, but that levels of OPN in cancer patients' blood or tumors may provide prognostic information.  相似文献   
127.
Serial passage of yellow fever 17D virus (YF5.2iv, derived from an infectious molecular clone) on mouse neuroblastoma (NB41A3) cells established a persistent noncytopathic infection associated with a variant virus. This virus (NB15a) was dramatically reduced in plaque formation and exhibited impaired replication kinetics on all cell lines examined compared to the parental virus. Nucleotide sequence analysis of NB15a revealed a substitution in domain III of the envelope (E) protein at residue 360, where an aspartic acid residue was replaced by glycine. Single mutations were also found within the NS2A and NS3 proteins. Engineering of YF5.2iv virus to contain the E(360) substitution yielded a virus (G360 mutant) whose plaque size and growth efficiency in cell culture resembled those of NB15a. Compared with YF5.2iv, both NB15a and G360 were markedly restricted for spread through Vero cell monolayers and mildly restricted in C6/36 cells. On NB41A3 cells, spread of the viruses was similar, but all three were generally inefficient compared with spread in other cell lines. Compared to YF5.2iv virus, NB15a was uniformly impaired in its ability to penetrate different cell lines, but a difference in cell surface binding was detected only on NB41A3 cells, where NB15a appeared less efficient. Despite its small plaque size, impaired growth, and decreased penetration efficiency, NB15a did not differ from YF5.2iv in mouse neurovirulence testing, based on mortality rates and average survival times after intracerebral inoculation of young adult mice. The data indicate that persistence of yellow fever virus in NB41A3 cells is associated with a mutation in the receptor binding domain of the E protein that impairs the virus entry process in cell culture. However, the phenotypic changes which occur in the virus as a result of the persistent infection in vitro do not correlate with attenuation during pathogenesis in the mouse central nervous system.  相似文献   
128.
129.
We have applied Bayesian and maximum likelihood methods of phylogenetic estimation to data from four mitochondrial genes (COI, COII, 12S, and 16S) and a single nuclear gene (EF1alpha) from several genera of New Zealand, Australian, and New Caledonian cicada taxa. We specifically focused on the heterogeneity of phylogenetic signal among the different data partitions and the biogeographic origins of the New Zealand cicada fauna. The Bayesian analyses circumvent many of the problems associated with other statistical tests for comparing data partitions. We took an information-theoretic approach to model selection based on the Akaike Information Criterion (AIC). This approach indicated that there was considerable uncertainty in identifying the best-fit model for some of the partitions. Additionally, a large amount of uncertainty was associated with many parameter estimates from the substitution model. However, a sensitivity analysis on the combined dataset indicated that the model selection uncertainty had little effect on estimates of topology because these estimates were largely insensitive to changes in the assumed model. This outcome suggests strong signal in our data. Our analyses support a New Caledonian affiliation of the New Zealand cicada genera Maoricicada, Kikihia, and Rhodopsalta and Australian affinities for the genera Amphipsalta and Notopsalta. This result was surprising, given that previous cicada biologists suspected a close relationship between Amphipsalta, Notopsalta, and Rhodopsalta based on genitalic characters. Relationships among the closely related genera Maoricicada, Kikihia, and Rhodopsalta were poorly resolved, the mitochondrial data and the EF1alpha data favoring different arrangements within this clade.  相似文献   
130.
We present an algorithm for the computation of 2'-deoxyribose-phosphodiester backbone conformations that are stereochemically compatible with a given arrangement of nucleic acid bases in a DNA structure. The algorithm involves the sequential computation of 2'-deoxyribose and phosphodiester conformers (collectively referred to as a backbone 'segment'), beginning at the 5'-end of a DNA strand. Computation of the possible segment conformations is achieved by the initial creation of a fragment library, with each fragment representing a set of bond lengths, bond angles and torsion angles. Following exhaustive searching of sugar conformations, each segment conformation is reduced to a single vector, defined by a specific distance, angle and torsion angle, that allows calculation of the O(1)' position. A given 'allowed' conformation of a backbone segment is determined based on its compatibility with the base positions and with the position of the preceding backbone segment. Initial computation of allowable segment conformations of a strand is followed by the determination of continuous backbone solutions for the strand, beginning at the 3'-end. The algorithm is also able to detect repeating segment conformations that arise in structures containing geometrically repeating dinucleotide steps. To illustrate the utility and properties of the algorithm, we have applied it to a series of experimental DNA structures. Regardless of the conformational complexity of these structures, we are able to compute backbone conformations for each structure. Hence, the algorithm, which is currently implemented within a new computer program NASDAC (Nucleic Acids: Structure, Dynamics and Conformation), should have generally applicability to the computation of DNA structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号