首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15922篇
  免费   798篇
  国内免费   1049篇
  17769篇
  2024年   143篇
  2023年   215篇
  2022年   462篇
  2021年   838篇
  2020年   540篇
  2019年   630篇
  2018年   638篇
  2017年   541篇
  2016年   629篇
  2015年   912篇
  2014年   1082篇
  2013年   1214篇
  2012年   1420篇
  2011年   1272篇
  2010年   787篇
  2009年   691篇
  2008年   763篇
  2007年   628篇
  2006年   610篇
  2005年   498篇
  2004年   436篇
  2003年   338篇
  2002年   353篇
  2001年   320篇
  2000年   262篇
  1999年   255篇
  1998年   166篇
  1997年   132篇
  1996年   134篇
  1995年   128篇
  1994年   138篇
  1993年   93篇
  1992年   96篇
  1991年   71篇
  1990年   68篇
  1989年   58篇
  1988年   57篇
  1987年   35篇
  1986年   33篇
  1985年   20篇
  1984年   23篇
  1983年   12篇
  1982年   8篇
  1981年   2篇
  1980年   3篇
  1970年   1篇
  1969年   6篇
  1968年   1篇
  1964年   1篇
  1933年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
33.
Zhao  Dawei  Wu  Di  Zhang  Gengyue  Li  Yongqi  Shi  Weiguo  Zhong  Bohua  Yu  Hong 《Molecular biology reports》2022,49(9):8359-8368
Molecular Biology Reports - Irinotecan (CPT-11) is a camptothecin derivative whose potent anti-tumor activity depends on the rapid formation of an in vivo active metabolite, SN38...  相似文献   
34.
Long  Jun-Yi  Wang  Xue-Jun  Li  Xiao-Ying  Kong  Xie-He  Yang  Guang  Zhang  Dan  Yang  Yan-Ting  Shi  Zheng  Ma  Xiao-Peng 《Neurochemical research》2022,47(3):545-551
Neurochemical Research - Chronic visceral pain (CVP) is one of the common symptoms of many diseases triggered by underlying diseases of the internal organs of the human body. Its causes include...  相似文献   
35.
Cai  Tiantian  Yao  Wendong  Qiu  Lei  Zhu  Austin Rui  Shi  Zheng  Du  Yi 《Molecular biology reports》2022,49(5):3693-3704
Molecular Biology Reports - It has been reported that Pleckstrin 2 (PLEK2) acts as an oncogene in non-small cell lung cancer (NSCLC). Bromodomain containing protein 4 (BRD4), an important...  相似文献   
36.
A stunted root system is a significant symptom of iron (Fe) toxicity, yet little is known about the effects of excess Fe on lateral root (LR) development. In this work, we show that excess Fe has different effects on LR development in different portions of the Arabidopsis (Arabidopsis thaliana) root system and that inhibitory effects on the LR initiation are only seen in roots newly formed during excess Fe exposure. We show that root tip contact with Fe is both necessary and sufficient for LR inhibition and that the auxin, but not abscisic acid, pathway is engaged centrally in the initial stages of excess Fe exposure. Furthermore, Fe stress significantly reduced PIN-FORMED2 (PIN2)-green fluorescent protein (GFP) expression in root tips, and pin2-1 mutants exhibited significantly fewer LR initiation events under excess Fe than the wild type. Exogenous application of both Fe and glutathione together increased PIN2-GFP expression and the number of LR initiation events compared with Fe treatment alone. The ethylene inhibitor aminoethoxyvinyl-glycine intensified Fe-dependent inhibition of LR formation in the wild type, and this inhibition was significantly reduced in the ethylene overproduction mutant ethylene overproducer1-1. We show that Auxin Resistant1 (AUX1) is a critical component in the mediation of endogenous ethylene effects on LR formation under excess Fe stress. Our findings demonstrate the relationship between excess Fe-dependent PIN2 expression and LR formation and the potential role of AUX1 in ethylene-mediated LR tolerance and suggest that AUX1 and PIN2 protect LR formation in Arabidopsis during the early stages of Fe stress.Iron (Fe) is an essential trace element for plants (Pilon et al., 2009), and species differ greatly in how much Fe they require for optimal growth (Wheeler and Power, 1995; Batty and Younger, 2003). As Fe is frequently limiting, Fe deficiency is more commonly studied than toxicity arising from excess Fe exposure (Lei et al., 2014; Bashir et al., 2015; Briat et al., 2015). Fe is also a major focus for efforts in biofortification by targeting Fe transporters (Zhai et al., 2014; Pinto and Ferreira, 2015). However, the excessive presence of Fe in soils is equally common, in particular in soils characterized by low pH and hypoxic or anoxic conditions (Connolly and Guerinot, 2002). Toxicity arising from excess Fe exposure is recognized as one of the major plant diseases attributable to abiotic factors that impact the development and yield potential in the world’s leading cereal crops, rice (Oryza sativa) and wheat (Triticum aestivum; Becker and Asch, 2005; Khabaz-Saberi et al., 2012). Understanding the mechanisms underlying excess Fe toxicity is therefore essential.Plastic responses in the plant’s root system architecture are known to constitute a major mechanism by which plants cope with fluctuating environments. Lateral roots (LRs), which typically comprise the majority of the root system, contribute pivotally to nutrient acquisition from soil, and modulating LR development is a very important avoidance strategy for plants when confronted with unfavorable edaphic conditions, such as high salinity or heavy metals (Ivanov et al., 2003). In the case of excess exposure to Fe, stunting of the root system is among the chief symptoms of toxicity (Becker and Asch, 2005). However, while some information has been emerging on the primary root axis (Li et al., 2015), the specific role of the plant’s LR apparatus remains poorly studied. Yamauchi and Peng (1995) reported retardation of root growth and a reduction in LR length and number under excess Fe conditions. Recently, Reyt et al. (2015) showed that excess Fe had no significant effect on LR initiation in the LR branching zone and that ferritins play an important role in LR emergence under excess Fe in this portion of the root, although the authors had not investigated LR development in the root portions near the growing tip of the primary root. Because LR initiation is restricted to specific pericycle cell files adjacent to a xylem pole in the basal region of the meristem (De Smet et al., 2007; Fukaki and Tasaka, 2009), and LR formation in this new growing root portion may be more susceptible to stress stimuli, such as observed with exposure to high NH4+ and salt (Duan et al., 2013; Li et al., 2013), it is reasonable to suggest that modulation of LR formation near the growing tip of the primary root is critical to the response to excess Fe stress.In Arabidopsis (Arabidopsis thaliana), the development of LRs proceeds through the following stages: lateral root primordia (LRP) initiation, establishment, emergence, activation into mature LRs, and final maintenance of LR elongation (Fukaki and Tasaka, 2009; Péret et al., 2009). The hormones abscisic acid (ABA) and auxin are important internal negative and positive regulators during LR development, respectively (Fukaki and Tasaka, 2009). ABA has been implicated in LRP emergence and meristem activation independent of auxin (De Smet et al., 2003). Auxin is an important internal positive regulator during LR development (Fukaki and Tasaka, 2009), and auxin transport is critical (Blilou et al., 2005). Mutants in auxin efflux carriers such as PIN-FORMED (PIN) and P-Glycoprotein show significant defects in LR formation (Fukaki and Tasaka, 2009; Péret et al., 2009). For example, LR initiation frequency was significantly reduced in pin2 and pin3 mutants (Dubrovsky et al., 2009), and PIN2 was also shown to be involved in exogenous and endogenous signal-mediated LR development (by brassinosteroid, jasmonate, and fungal challenge; Li et al., 2005; Felten et al., 2009; Sun et al., 2009). Similarly, Auxin Resistant1 (AUX1), an auxin influx carrier, also regulates LRP positioning and initiation (De Smet et al., 2007). While both AUX1 and PIN2 are required specifically for the basipetal transport of auxin through the outer root cell layers (Fukaki and Tasaka, 2009), PIN1 localized at the basal end of vascular cells is responsible for direct acropetal auxin flow in the root stele (Blilou et al., 2005). Recently, the roles of ethylene on LR development have also been highlighted, and the ethylene-mediated LR formation is dependent on the auxin pathway (Ivanchenko et al., 2008; Lewis et al., 2011). Ethylene treatment could mediate fluorescence of AUX1 and PIN2 fluorescent protein fusions at the root tip (Růzicka et al., 2007; Lewis et al., 2011). Although ABA, auxin, and ethylene signals have been implicated as important for LR development, it is not known whether and how the three hormones are involved in the response of LR formation to Fe stress.The previously described phenotypes and physiological processes related to Fe toxicity do not clarify the effect of excess Fe on LR formation. In this study, we employed the Arabidopsis wild type and ABA-, auxin-, and ethylene-related mutants to explore the LR formation response to Fe toxicity and to elucidate the roles of ABA, auxin, and ethylene. Potential mechanisms involved in the early stress response to Fe stress are discussed.  相似文献   
37.
38.
39.
40.
The intrinsic optimum temperature for the development of ectotherms is one of the most important factors not only for their physiological processes but also for ecological and evolutional processes. The Sharpe–Schoolfield–Ikemoto (SSI) model succeeded in defining the temperature that can thermodynamically meet the condition that at a particular temperature the probability of an active enzyme reaching its maximum activity is realized. Previously, an algorithm was developed by Ikemoto (Tropical malaria does not mean hot environments. Journal of Medical Entomology, 45, 963–969) to estimate model parameters, but that program was computationally very time consuming. Now, investigators can use the SSI model more easily because a full automatic computer program was designed by Shi et al. (A modified program for estimating the parameters of the SSI model. Environmental Entomology, 40, 462–469). However, the statistical significance of the point estimate of the intrinsic optimum temperature for each ectotherm has not yet been determined. Here, we provided a new method for calculating the confidence interval of the estimated intrinsic optimum temperature by modifying the approximate bootstrap confidence intervals method. For this purpose, it was necessary to develop a new program for a faster estimation of the parameters in the SSI model, which we have also done.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号