首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1180篇
  免费   120篇
  国内免费   1篇
  2023年   3篇
  2022年   9篇
  2021年   31篇
  2020年   20篇
  2019年   35篇
  2018年   37篇
  2017年   33篇
  2016年   48篇
  2015年   49篇
  2014年   55篇
  2013年   78篇
  2012年   69篇
  2011年   88篇
  2010年   43篇
  2009年   53篇
  2008年   53篇
  2007年   61篇
  2006年   58篇
  2005年   42篇
  2004年   39篇
  2003年   32篇
  2002年   35篇
  2001年   34篇
  2000年   26篇
  1999年   29篇
  1998年   16篇
  1997年   12篇
  1996年   11篇
  1995年   7篇
  1994年   8篇
  1993年   12篇
  1992年   17篇
  1991年   23篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1987年   9篇
  1986年   9篇
  1985年   10篇
  1984年   12篇
  1983年   10篇
  1982年   3篇
  1981年   4篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1975年   8篇
  1973年   3篇
  1972年   4篇
  1968年   3篇
排序方式: 共有1301条查询结果,搜索用时 156 毫秒
991.
Synthetic biology is often presented as a promissory field that ambitions to produce novelty by design. The ultimate promise is the production of living systems that will perform new and desired functions in predictable ways. Nevertheless, realizing promises of novelty has not proven to be a straightforward endeavour. This paper provides an overview of, and explores the existing debates on, the possibility of designing living systems de novo as they appear in interdisciplinary talks between engineering and biological views within the field of synthetic biology. To broaden such interdisciplinary debates, we include the views from the social sciences and the humanities and we point to some fundamental sources of disagreement within the field. Different views co-exist, sometimes as controversial tensions, but sometimes also pointing to integration in the form of intermediate positions. As the field is emerging, multiple choices are possible. They will inform alternative trajectories in synthetic biology and will certainly shape its future. What direction is best is to be decided in reflexive and socially robust ways.  相似文献   
992.
Arbitrariness is an elementary feature of human language, yet seldom an object of comparative inquiry. While arbitrary signals for the same function are relatively frequent between animal populations across taxa, the same signal with arbitrary functions is rare and it remains unknown whether, in parallel with human speech, it may involve call production in animals. To investigate this question, we examined a particular orangutan alarm call – the kiss-squeak – and two variants – hand and leaf kiss-squeaks. In Tuanan (Central Kalimantan, Indonesia), the acoustic frequency of unaided kiss-squeaks is negatively related to body size. The modified variants are correlated with perceived threat and are hypothesized to increase the perceived body size of the sender, as the use of a hand or leaves lowers the kiss-squeak’s acoustic frequency. We examined the use of these variants in the same context in another orangutan population of the same sub-species and with partially similar habitat at Cabang Panti (West Kalimantan, Indonesia). Identical analyses of data from this site provided similar results for unaided kiss-squeaks but dissimilar results for hand and leaf kiss-squeaks. Unaided kiss-squeaks at Cabang Panti were emitted as commonly and showed the same relationship to body size as in Tuanan. However, at Cabang Panti, hand kiss-squeaks were extremely rare, while leaf-use neither conveyed larger body size nor was related to perceived threat. These findings indicate functional discontinuity between the two sites and therefore imply functional arbitrariness of leaf kiss-squeaks. These results show for the first time the existence of animal signals involving call production with arbitrary function. Our findings are consistent with previous studies arguing that these orangutan call variants are socially learned and reconcile the role of gestures and calls within evolutionary theories based on common ancestry for speech and music.  相似文献   
993.
Dryland ecosystems account for ca. 27% of global soil organic carbon (C) reserves, yet it is largely unknown how climate change will impact C cycling and storage in these areas. In drylands, soil C concentrates at the surface, making it particularly sensitive to the activity of organisms inhabiting the soil uppermost levels, such as communities dominated by lichens, mosses, bacteria and fungi (biocrusts). We conducted a full factorial warming and rainfall exclusion experiment at two semiarid sites in Spain to show how an average increase of air temperature of 2–3 °C promoted a drastic reduction in biocrust cover (ca. 44% in 4 years). Warming significantly increased soil CO2 efflux, and reduced soil net CO2 uptake, in biocrust‐dominated microsites. Losses of biocrust cover with warming through time were paralleled by increases in recalcitrant C sources, such as aromatic compounds, and in the abundance of fungi relative to bacteria. The dramatic reduction in biocrust cover with warming will lessen the capacity of drylands to sequester atmospheric CO2. This decrease may act synergistically with other warming‐induced effects, such as the increase in soil CO2 efflux and the changes in microbial communities to alter C cycling in drylands, and to reduce soil C stocks in the mid to long term.  相似文献   
994.
The generation of the highly reactive ylide in thiamin diphosphate catalysis is analyzed in terms of the nucleophilicity of key atoms, by means of density functional calculations at X3LYP/6–31++G(d,p) level of theory. The Fukui functions of all tautomeric/ionization forms are calculated in order to assess their reactivity. The results allow to conclude that the highly conserved glutamic residue does not protonate the N1′ atom of the pyrimidyl ring, but it participates in a strong hydrogen bonding, stabilizing the eventual negative charge on the nitrogen, in all forms involved in the ylide generation. This condition provides the necessary reactivity on key atoms, N4′ and C2, to carry out the formation of the ylide required to initiate the catalytic cycle of ThDP- dependent enzymes. This study represents a new approach for the ylide formation in ThDP catalysis.
Figure
Nucleophilic character of the N1´-deprotonated ylide form  相似文献   
995.
Little is known about the feeding time dependence of clock gene expression in fish. The aim of the present study was to investigate whether a scheduled feeding time can entrain the rhythmic expression of several clock genes (period and cryptocrome) in the brain and liver of a teleost, the goldfish. Fish maintained under continuous light (LL) conditions were divided into 3 groups. Two groups were fed daily at 1000 h and 2200 h, respectively, and the third group was subjected to a random schedule regime. After 30 days, the fishes under 24-h food deprivation were sacrificed through a 24-h cycle, and clock gene expression in the optic tectum, hypothalamus, and liver was quantified by real-time PCR. The findings pointed to differences between the central and peripheral tissues studied. In the absence of a light-dark cycle (constant light), a scheduled feeding regime was necessary and sufficient to maintain both the rhythmic expression of several clock genes in the optic tectum and hypothalamus, as well as daily rhythms in locomotor activity. In contrast, neither locomotor activity nor clock gene expression in brain tissues was synchronized in randomly fed fish. However, in the liver, most of the clock genes studied presented significant daily rhythms in phase (related to the time of the last meal) in all 3 experimental groups, suggesting that the daily rhythm of clock genes in this organ only depends on the last meal time. The data suggest that, as in mammals, the smooth running of the food entrainable oscillator (FEO) in fish involves the rhythmic expression of several clock genes (Per1 and Cry3) in the central and peripheral structures. The results also indicate that the food anticipatory activity (FAA) in goldfish is not only the result of rhythmic clock gene expression in the liver because rhythmic clock gene expression was observed in randomly fed fishes, while FAA was not observed.  相似文献   
996.
Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.  相似文献   
997.
Decreased levels of glutamate and changes in several markers of glutamatergic function occur in movement disorders and chronic psychiatric illnesses. Ionotropic glutamate receptors have been implicated in neuronal cell death, and have, therefore, been related to the process of neurodegenerative diseases. Drugs that interact with the glutamatergic system are important tools for the development of better therapies. We examined the effect of a new glutamatergic analog, (+)-(S)-4-(2,2-diphenyl-1,3,2-oxazabolidin-5-oxo)propionic acid, (+)-(S)-Trujillon, on the spontaneous globus pallidus neuronal activity of the anesthetized rat. (+)-(S)-Trujillon excited most pallidal neurons in a dose-dependent manner. Furthermore, blockade of NMDA receptors (NMDARs) inhibited the (+)-(S)-Trujillon-induced excitation, whereas blockade of AMPA/kainate receptors did not. In addition, computational docking studies showed micromolar-range affinities of (+)-(S)-Trujillon for NR2A NMDARs. Our results indicate that (+)-(S)-Trujillon selectively activates NMDARs, an effect that could prove to be a useful tool in the analysis of motor, behavioral, and cognitive disorders, where NMDAR-mediated signaling is altered.  相似文献   
998.
Climatic influence (global warming and decreased rainfall) could lead to an increase in the ecological and toxicological effects of the pollution in aquatic ecosystems, especially contamination from agricultural nitrate (NO3) fertilizers. Physicochemical properties of the surface waters and sediments of four selected sites varying in NO3 concentration along La Rocina Stream, which feeds Marisma del Rocio in Doñana National Park (South West, Spain), were studied. Electrical conductivity, pH, content in macro and microelements, total organic carbon and nitrogen, and dissolved carbon and nitrogen were affected by each sampling site and sampling time. Contaminant NO3 in surface water at the site with the highest NO3 concentration (ranged in 61.6-106.6 mg L−1) was of inorganic origin, most probably from chemical fertilizers, as determined chemically (90% of the total dissolved nitrogen from NO3) and by isotopic analysis of δ15N-NO3. Changes in seasonal weather conditions and hydrological effects at the sampling sites were also responsible for variations in some biological activities (dehydrogenase, β-glucosidase, arylsulphatase, acid phosphatase and urease) in sediments, as well as in the production of the greenhouse gases CO2, CH4 and N2O. Both organic matter and NO3 contents influenced rates of gas production. Increased NO3 concentration also resulted in enhanced levels of potential denitrification measured as N2O production. The denitrification process was affected by NO3 contamination and the rainfall regimen, increasing the greenhouse gases emissions (CO2, CH4 and especially N2O) during the driest season in all sampling sites studied.  相似文献   
999.
We present BioGraph, a data integration and data mining platform for the exploration and discovery of biomedical information. The platform offers prioritizations of putative disease genes, supported by functional hypotheses. We show that BioGraph can retrospectively confirm recently discovered disease genes and identify potential susceptibility genes, outperforming existing technologies, without requiring prior domain knowledge. Additionally, BioGraph allows for generic biomedical applications beyond gene discovery. BioGraph is accessible at .  相似文献   
1000.
The group selection debate of the 1960s made it clear that evolution does not necessarily increase population performance. Individuals can be selected to have traits that diminish a common good and make population persistence difficult. At the extreme, the discrepancy between levels of selection is predicted to make traits evolve towards values at which a population can no longer persist (evolutionary suicide). Dispersal and prospecting are prime examples of traits that have a strong influence on population persistence under environmental and demographic stochasticity. Theory predicts that an ‘optimal’ dispersal strategy from a population point of view can differ considerably from that produced by individual‐level selection. Because dispersal is frequently risky or otherwise costly, individuals are often predicted to disperse less than would be ideal for population performance (persistence or size). We define this discrepancy as ‘inertia’ and examine current knowledge of its occurrence and effects on population dynamics in nature. We argue that inertia is potentially widespread but that a framework is currently lacking for predicting precisely the extent to which it has a real influence on population persistence. The opposite of inertia, ‘hypermobility’ (more dispersal by individuals than would maximize population performance) remains a possibility: it is known that highest dispersal rates do not lead to best expected population performance, and examples of such high dispersal evolving exist at least in the theoretical literature. We also show, by considering prospecting behaviour, that similar issues arise in species with advanced cognitive and learning abilities. Individual prospecting strategies and the information acquired during dispersal are known to influence the decisions and therefore the fate of individuals and, as a corollary, populations. Again, the willingness of individuals to sample environments might evolve to levels that are not optimal for populations. This conflict can take intriguing forms. For example, better cognitive abilities of individuals may not always lead to better population‐level performance. Simulation studies have found that ‘blind’ dispersal can lead to better connected metapopulations than cognitively more advanced habitat choice rules: the latter can lead to too many individuals sticking to nearby safe habitat. The study of the mismatch between individual and population fitness should not be a mere intellectual exercise. Population managers typically need to take a population‐level view of performance, which may necessitate human intervention if it differs from what is selected for. We conclude that our knowledge of inertia and hypermobility would advance faster if theoretical studies—without much additional effort—quantified the population consequences of the evolving traits and compared this with hypothetical (not selectively favoured) dispersal rules, and if empirical studies were similarly conducted with the differing levels of selection in mind.  相似文献   
[首页] « 上一页 [95] [96] [97] [98] [99] 100 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号