首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   19篇
  2022年   6篇
  2021年   6篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   5篇
  2013年   15篇
  2012年   6篇
  2011年   6篇
  2010年   13篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2001年   3篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1968年   2篇
  1958年   5篇
  1957年   1篇
  1956年   2篇
  1955年   2篇
  1954年   2篇
  1953年   4篇
  1952年   4篇
  1951年   2篇
  1949年   1篇
排序方式: 共有177条查询结果,搜索用时 46 毫秒
121.
Treatment of tobacco BY‐2 cells with micromolar concentration of benzyladenosine ([9R]BA) resulted in the loss of cell viability in a time‐ and concentration‐dependent manner. Cell death induced by [9R]BA exhibited typical apoptotic hallmarks including cell shrinkage, chromatin condensation and degradation of nuclear DNA to characteristic high molecular weight (HMW) as well as nucleosomal size fragments. Externally added [9R]BA was very rapidly and almost quantitatively phosphorylated within BY‐2 cells. Accumulation of [9R]BA‐monophosphate was accompanied by massive production of endogenous reactive oxygen species (ROS), intracellular ATP depletion, and these events were followed by the loss of cell viability. Inhibition of intracellular phosphorylation of [9R]BA by adenosin kinase inhibitor, 5′‐amino‐5′‐deoxyadenosine (AdAs), diminished ROS production, ATP depletion, and consequently prevented cells from death. Selective inhibition of ROS production without restoring ATP production, however, did not provide any protection to cells. In contrast, even enhanced phosphorylation of [9R]BA caused by adenosine that simultaneously revived ATP synthesis reduced the number of dying cells. This is the first evidence of a direct relationship between intracellular phosphorylation of [9R]BA and apoptosis induction in BY‐2 cells. ATP depletion but not ROS production is the key secondary event that determines the cellular decision between life and death.  相似文献   
122.
The present study was designed to test the hypothesis that house flies may be capable of specifically harbouring ingested Vibrio cholerae in their digestive tracts. Flies were continuously fed green fluorescent protein (GFP)‐labelled, non‐O1/non‐O139 environmental strains of V. cholerae. Bacterial burdens were quantitatively measured using plate counts and localization was directly observed using confocal microscopy. Vibrio cholerae were present in the fly alimentary canal after just 4 h, and reached a plateau of ~107 colony‐forming units (CFU)/fly after 5 days in those flies most tolerant of the pathogen. However, individual flies were resistant to the pathogen: one or more flies were found to carry < 180 V. cholerae CFU at each time‐point examined. In flies carrying V. cholerae, the pathogen was predominantly localized to the midgut rather than the rectal space or crop. The proportion of house flies carrying V. cholerae in the midgut was dose‐dependent: the continuous ingestion of a concentrated, freshly prepared dose of V. cholerae increased the likelihood that fluorescent cells would be observed. However, V. cholerae may be a transient inhabitant of the house fly. This work represents the first demonstration that V. cholerae can inhabit the house fly midgut, and provides a platform for future studies of host, pathogen and environmental mediators of the successful colonization of this disease vector.  相似文献   
123.
124.
125.
An extensive survey of filamentous fungi isolated from wheat grown and consumed in Lebanon and their capacity to produce aflatoxin B1 (AFB1) and ochratoxin A (OTA) was conducted to assess fungi potential for producing these toxins in wheat. From the 468 samples of wheat kernel, collected at preharvest stage from different locations during 2008 and 2009 cultivation seasons, 3,260 fungi strains were isolated with 49.4% belonging to Penicillium spp. and 31.2% belonging to Aspergillus spp. Penicillium spp. was detected on wheat samples with a high amount of P. verrucosum (37.0%). Among the different Aspergillus spp. isolated, A. niger aggregate was predominant and constituted 37.3%. whereas the isolation rate of A. flavus and A. ochraceus was 32.2 and 25.6%, respectively. The ability to produce OTA and AFB1 by isolates belonging to Aspergillus spp. and Penicillium spp. was analyzed by high performance liquid chromatography with fluorescence detector (HPLC-FLD). It was found that 57.0% of Penicillium spp. and 80% of A. ochraceus isolates tested produced OTA, respectively, at maximum concentrations of 53 and 65 μg/g CYA. As for the aflatoxinogenic ability, 45.3% of A. flavus produced AFB1, with maximum concentration of 40 μg/g CYA. A total of 156 wheat samples were analyzed for the levels of OTA and AFB1 by HPLC-FLD. The results showed that 23.7% were contaminated with OTA, at a concentration higher than 3 μg/kg and 35.2% of these samples were contaminated with AFB1 at concentration higher than 2 μg/kg. The risks originating from toxin levels in wheat produced in Lebanon should be monitored to prevent their harmful effects on public health.  相似文献   
126.
Short‐rotation woody crops (SRWC) such as poplar and willow are an important source of renewable energy. They can be converted into electricity and/or heat using conventional or modern biomass technologies. In recent years many studies have examined the energy and greenhouse gas (GHG) balance of bioenergy production from poplar and willow using various approaches. The outcomes of these studies have, however, generated controversy among scientists, policy makers, and the society. This paper reviews 26 studies on energy and GHG balance of bioenergy production from poplar and willow published between 1990 and 2009. The data published in the reviewed literature gave energy ratios (ER) between 13 and 79 for the cradle‐to‐farm gate and between 3 and 16 for cradle‐to‐plant assessments, whereas the intensity of GHG emissions ranged from 0.6 to 10.6 g CO2 Eq MJbiomass?1 and 39 to 132 g CO2 Eq kWh?1. These values vary substantially among the reviewed studies depending on the system boundaries and methodological assumptions. The lack of transparency hampers meaningful comparisons among studies. Although specific numerical results differ, our review revealed a general consensus on two points: SRWC yielded 14.1–85.9 times more energy than coal (ERcoal~0.9) per unit of fossil energy input, and GHG emissions were 9–161 times lower than those of coal (GHGcoal~96.8). To help to reduce the substantial variability in results, this review suggests a standardization of the assumptions about methodological issues. Likewise, the development of a widely accepted framework toward a reliable analysis of energy in bioenergy production systems is most needed.  相似文献   
127.
128.
The present study involves the tracking of marching bands of more than 300,000 gregarious nymphs of the desert locust, Schistocerca gregaria, to examine shelter plant preference and how species and size of shelter plants and nymphal group sizes jointly influence the escaping behavior of 4th- and 5th-instar gregarious nymphs. Field observations are conducted during daytime and night-time in the Sahara Desert in Mauritania. Three dominant plant species have been identified at the survey site: Hyoscyamus muticus, Panicum turgidum, and Nucularia perrini. The smallest mean plant size among the three plant species is H. muticus. Gregarious nymphs perch on all the three plant species irrespective of time, and form various sizes of groups ranging from <10 to >10,000 nymphs. Groups of gregarious locusts perching on the plants show either escaping or sheltering behavior in response to an approaching observer. Percentages of nymphal groups showing escaping behavior for H. muticus, P. turgidum and N. perrini are 96.4, 47.6 and 19.5 %, respectively. Defensive behavior is not affected by nymphal group size but by species and size of shelter plants. Nymphal groups tend to show escaping behavior when their perching plants are relatively small. No groups escape from their perching plants during night. These results might indicate that gregarious nymphs do not have a strong shelter plant preference and change their defensive behavior depending on species and size of sheltering plants and light conditions.  相似文献   
129.
Pneumocystis carinii is an opportunistic agent found in the lung of various mammals which often causes severe pneumonia in immunocompromised humans, especially in AIDS patients. In the past several years significant additions have been made to the collection of knowledge we have concerning the genetic diversity of P. carinii. These additions provide new understanding of Pneumocystis transmission and the effect of possible reservoirs of Pneumocystis in the various species. In this study, a 400-bp fragment of the thymidylate synthase (TS) gene of P. carinii has been amplified by PCR from 43 parasite isolates obtained from 4 mammalian host species: rat, mouse, rabbit and human. A probe selected from the TS gene sequence of rat-derived P. carinii was hybridized with the amplified products from rat- and mouse-derived P. carinii, but not with rabbit or human P. carinii DNA. Restriction profiles were performed on amplified fragments from all isolates, and the 4 nucleotide sequences of the TS gene fragment amplifed from rat, mouse, rabbit and human P. carinii were determined. Differences were detected in the gene fragment in P. carinii isolates from the 4 host species; however no difference was revealed in P. carinii isolates within a single host species, whatever the host strain or its geographic origin. Thus, the sequence differences of the P. carinii TS gene appeared as host-species specific. A specific probe which recognized all human P. carinii isolates was defined.  相似文献   
130.
ABSTRACT. Trypanosoma brucei gambiense , which causes human African trypanosomiasis, catabolizes the aromatic amino acid tryptophan via an initial aminotransferase catalyzed reaction to form several indole end products, which have been suggested to contribute to the pathogenesis of trypanosomiasis. To determine if this same pathway exists in T. evansi , the closely related trypanosome pathogen of domestic animals, tryptophan catabolism was examined in vitro and in vivo. As is the case with human African trypanosomes, T. evansi catabolized tryptophan to form indole-3-pyruvic acid and smaller amounts of indole-3-acetic acid and indole-3-lactic acid. Large concentrations of indole-3-pyruvic acid are excreted in urine of trypanosome-infected mice. However, indole-3-ethanol could not be detected in incubates of T. evansi or T. b. gambiense , even though the latter species had previously been reported to form this neutral metabolite. A new, previously unreported tryptophan metabolite was isolated and partially characterized from incubates of T. evansi and T. b. gambiense. Although the functional significance of tryptophan catabolism to trypanosomatids remains obscure, the pathway is quantitatively significant in all species examined thus far.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号