首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21070篇
  免费   1691篇
  国内免费   1748篇
  24509篇
  2024年   56篇
  2023年   316篇
  2022年   714篇
  2021年   1154篇
  2020年   767篇
  2019年   982篇
  2018年   915篇
  2017年   617篇
  2016年   914篇
  2015年   1343篇
  2014年   1524篇
  2013年   1582篇
  2012年   1938篇
  2011年   1708篇
  2010年   1002篇
  2009年   925篇
  2008年   1092篇
  2007年   908篇
  2006年   832篇
  2005年   650篇
  2004年   509篇
  2003年   452篇
  2002年   372篇
  2001年   323篇
  2000年   326篇
  1999年   327篇
  1998年   210篇
  1997年   243篇
  1996年   191篇
  1995年   189篇
  1994年   164篇
  1993年   130篇
  1992年   182篇
  1991年   143篇
  1990年   146篇
  1989年   98篇
  1988年   90篇
  1987年   87篇
  1986年   63篇
  1985年   65篇
  1984年   43篇
  1983年   47篇
  1982年   21篇
  1981年   16篇
  1980年   14篇
  1979年   12篇
  1978年   10篇
  1969年   9篇
  1968年   8篇
  1965年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
N-methyl-D-aspartate receptor (NMDAR) activity plays a key role in cerebral ischemia. Although NMDAR is also expressed in cardiomyocytes, little research has been performed on NMDAR activity in myocardial ischemia. Here, using an in vitro oxygen-glucose deprivation (OGD) cardiomyocyte model, we evaluated the effects of NMDAR activity upon calcium influx, viability, apoptosis, and investigated the roles of several key mitogen-activated protein kinases (MAPKs). Primary human neonatal cardiomyocytes were cultured under OGD conditions to mimic in vivo ischemic conditions. Enhancing NMDAR activity via NMDA significantly promoted calcium influx, decreased cell viability, increased apoptosis, and enhanced p38 MAPK phosphorylation in OGD cardiomyocytes (all P < 0.05). These effects were rescued by several calcium-channel blockers (ie, MK-801, La3+, Gap26 peptide, 18β-glycyrrhetinic acid) but most potently rescued via the NMDAR-specific antagonist MK-801 or removal of extracellular free calcium (all P < 0.05). Knocking-down p38 MAPK activity by small-molecule inhibition or genetic methods significantly increased cell viability and reduced apoptosis (all P < 0.05). Enhancing p38 MAPK activity abolished MK-801′s apoptosis-reducing effects in a p38 MAPK-dependent manner. In conclusion, NMDAR-driven calcium influx promotes apoptosis in ischemic human cardiomyocytes, an effect which can be attributed to enhanced p38 MAPK activity.  相似文献   
993.
The adipokine Chemerin has been reported to regulate differentiation and metabolism of adipocytes, but the mechanism underlying lipolysis is still largely unknown. The purpose of this study was to explore whether ERK1/2 pathway is involved in regulating Chemerin during bovine intramuscular mature adipocyte lipolysis. Intramuscular mature adipocytes of dairy bull calves were cultured in vitro and were treated with Chemerin or U0126, which is an inhibitor of ERK1/2 pathway. The results showed that TG content in cells was significantly decreased, glycerol and free fatty acid were significantly increased in cell culture media, and the expression of phosphorylated ERK1/2 in cells was increased in Chemerin-treated group, suggested that ERK1/2 pathway was involved in regulation of lipolysis by Chemerin. In addition, the expression of lipolytic-related critical factors ATGL, HSL, LPL, PPARα, UCP3, and CPT1 were upregulated, but the expression of adipogenic key factors, including PPARγ and C/EBPα were downregulated by Chemerin. Interestingly, all the effects of Chemerin on genes expression in intramuscular mature adipocytes or fat tissue were inhibited by U0126, showed that the function of Chemerin to promote adipose decomposition will be significantly weakened if the ERK1/2 pathway is suppressed, and confirmed that ERK1/2 pathway is involved in mediate Chemerin-enhanced lipolysis. In conclusion, the study demonstrated that Chemerin induce intramuscular mature adipocytes lipolysis through activation of the ERK1/2 pathway. Our research at least provide partial mechanisms of Chemerin on lipolysis and deposition of intramuscular fat tissue of dairy bull calves.  相似文献   
994.
Gastric cancer is one of the top causes of cancer-related death around the world, and poor prognosis of gastric cancer is due to the lack of early detection and effective treatment especially in male. Here, we first revealed the role of histone lysine-specific demethylase 5D (KDM5D) in gastric cancer in male. KDM5D was associated with the metastasis of gastric cancer because of its critical role in the epithelial-mesenchymal transition of gastric cancer cells. Downregulation of KDM5D in gastric cancer cells significantly increase the number of migrated or invaded cells due to the increasing expressions of mesenchymal markers. Downregulation of KDM5D also promotes tumor formation of gastric cancer cell in vivo. For mechanism, downregulation of KDM5D could inhibit the demethylation in the promoter of CUL4A, which lead to the increasing expression of ZEB1 and decreasing expressions of p21 and p53. Collectively, KDM5D performed its role in metastasis of gastric cancer through demethylation in the promoter of CUL4A, and it suggested us a novel target in gastric cancer treatment in male.  相似文献   
995.
996.
As a first line medicine for malaria treatment, artesunate (ART) also shows antitumor potential. However, little is known about the effect of ART on the cancer cell epithelial-mesenchymal transition (EMT). In this study, we found that ART inhibited cell growth in SK-HEP1 and SM7721 hepatocellular carcinoma cell lines. A microarray was used to identify differentially expressed protein-coding RNAs (pcRNA) and long noncoding RNAs (lncRNA) between SK-HEP1 cells with and without ART treatment. A differentially expressed lncRNA—RP11, the most related to the EMT of liver cancer cells—RP11 was identified by abioinformatics method Overexpressing and silencing assays were used to verify the role of RP11 in cancer cell EMT. The levels of RP11- and EMT-related genes in liver cancer samples from 75 patients were detected by using qualitative polymerase chain reaction or immunohistochemistry. We identified 1334 pcRNAs and 1670 lncRNA with differential expression induced by ART. ART inhibits EMT, proliferation, migration, invasion, and adhesion of liver cancer cells. RP11 depresses the inhibitory effect of ART on cancer cell EMT. The level of RP11 is associated with cancer cell EMT and metastasis and survival rate of the patient. These data suggest that RP11-linking ART and cancer cell EMT are important for ART-inhibited metastasis of liver cancer.  相似文献   
997.
998.
999.
New perinatal care technologies have improved the survival rate of preterm neonates, but the prevalence of bronchopulmonary dysplasia (BPD), one of the most intractable problems in neonatal intensive care unit (NICU), remains unchanged. In present study, high-throughput sequencing (HTS) was performed to detect the expression profiles of long noncoding RNAs (lncRNAs), messenger RNAs (mRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) in hyperoxia-induced BPD mouse model. Significant differentially expressed RNAs were selected and clustered between the BPD group and the control group. The results revealed that expressions of 1778 lncRNAs, 1240 mRNAs, 97 circRNAs, and 201 miRNAs were significantly altered in the BPD group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to predict the potential functions of differentially expressed RNAs. lncRNA-mRNA and circRNA-miRNA coexpression networks were constructed to detect their association with the pathogenesis of BPD. Our study provides a systematic perspective on the potential function of RNAs during BPD.  相似文献   
1000.
Peptide-based therapeutics are an alternative to small molecule drugs as they offer superior specificity, lower toxicity, and easy synthesis. Here we present an approach that leverages the dramatic performance increase afforded by the recent arrival of GPU accelerated thermodynamic integration (TI). GPU TI facilitates very fast, highly accurate binding affinity optimization of peptides against therapeutic targets. We benchmarked TI predictions using published peptide binding optimization studies. Prediction of mutations involving charged side-chains was found to be less accurate than for non-charged, and use of a more complex 3-step TI protocol was found to boost accuracy in these cases. Using the 3-step protocol for non-charged side-chains either had no effect or was detrimental. We use the benchmarked pipeline to optimize a peptide binding to our recently discovered cancer target: EME1. TI calculations predict beneficial mutations using both canonical and non-canonical amino acids. We validate these predictions using fluorescence polarization and confirm that binding affinity is increased. We further demonstrate that this increase translates to a significant reduction in pancreatic cancer cell viability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号