首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5319篇
  免费   408篇
  5727篇
  2024年   3篇
  2023年   37篇
  2022年   83篇
  2021年   148篇
  2020年   68篇
  2019年   116篇
  2018年   138篇
  2017年   128篇
  2016年   195篇
  2015年   300篇
  2014年   331篇
  2013年   432篇
  2012年   509篇
  2011年   487篇
  2010年   300篇
  2009年   244篇
  2008年   332篇
  2007年   337篇
  2006年   310篇
  2005年   249篇
  2004年   244篇
  2003年   215篇
  2002年   193篇
  2001年   32篇
  2000年   19篇
  1999年   30篇
  1998年   44篇
  1997年   18篇
  1996年   24篇
  1995年   20篇
  1994年   13篇
  1993年   13篇
  1992年   26篇
  1991年   11篇
  1990年   8篇
  1989年   7篇
  1988年   9篇
  1987年   5篇
  1986年   7篇
  1985年   7篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1939年   1篇
排序方式: 共有5727条查询结果,搜索用时 14 毫秒
31.
The clinically used sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitor dorzolamide (DRZ), a new sulfonamide CA inhibitor also incorporating NO-donating moieties, NCX250, and isosorbide mononitrate (ISMN) (an NO-donating compound with no CA inhibitory properties) were investigated for their intraocular pressure (IOP) lowering effects in rabbits with carbomer-induced glaucoma. NCX250 was more effective than DRZ or ISMN on lowering IOP, increasing ocular hemodynamics, decreasing the inflammatory processes and ocular apoptosis in this animal model of glaucoma. NO participate to the regulation of IOP in glaucoma, having also antiapoptotic and anti-inflammatory effects. The ophthalmic artery, both systolic and diastolic velocities, were significantly reduced in NCX250-treated eyes in comparison to DRZ treated ones, suggesting thus a beneficial effect of NCX250 on the blood supply to the optic nerve. Combining CA inhibition with NO-donating moieties in the same compound offers an excellent approach for the management of glaucoma.  相似文献   
32.
This study aimed to investigate the in vitro damage induced by ochratoxin A (OTA) in BME-UV1 and MDCK epithelial cells. Both cells lines were treated with OTA (0 up to 10 μg/mL), and cell viability (MTT assay), membrane stability (lactate dehydrogenase (LDH) release assay) and apoptotic cell rate (Tunel assay) were investigated. Further, the effect of the incubation with OTA has been evaluated at DNA level by the determination of DNA integrity, by the quantification of DNA adduct formation (8-hydroxy-2′-deoxyguanosine (8-OHdG)) and by the assessment of the global DNA methylation status (5-methyl-cytosine (5-mC)). The obtained results showed that after 24 h of OTA treatment, BME-UV1 cell viability was reduced in a dose-dependent way. OTA significantly (P?<?0.05) increased LDH release in BME-UV1 cells at all concentrations tested. OTA (1.25 μg/mL) induced 35 % LDH release in MDCK cells (P?<?0.05). A significant (P?<?0.05) change in percentages of apoptotic BME-UV1 (10?±?0.86) and MDCK (25?±?0.88) cells was calculated when the cells were co-incubated with OTA. The level of 8-OHdG adduct formation was significantly (P?<?0.05) increased in BME-UV1 cells treated with 1.25 μg/mL of OTA. The results of the present study suggest that a different mechanism of action may occur in these cell lines.
Graphical abstract Study results overview
  相似文献   
33.
34.
35.
36.
Biological Invasions - It is widely assumed that spillover of alien parasites to native host species severely impacts naïve populations, ultimately conferring a competitive advantage to...  相似文献   
37.
Alzheimer disease (AD) is the most common form of dementia in the elderly, progressively affecting the cognitive functions with a complex diagnostic procedure that limits the time for a prompt intervention. In this study we optimized a reliable protocol for the analysis of AD patients and healthy subjects' serum using the Surface Enhanced Raman Spectroscopy (SERS), taking into consideration the effect of different variables on the final spectra, analyzed and compared through multivariate analysis and correlated with hippocampus volume. As results, we demonstrated a statistical difference between the spectra collected from the two investigated groups, with an accuracy, precision and specificity of respectively 83%, 86%, and 86%. The correlation of these data with those obtained from MRI, demonstrated a direct correlation between Raman spectra and hippocampus degeneration showing the Raman Spectroscopy (RS) as a potential tool for the monitoring of AD progression and rehabilitation treatments.  相似文献   
38.
Obesity is considered a chronic low-grade inflammatory state associated with a chronic oxidative stress caused by superoxide production (O(2)(-)). The superoxide dismutase manganese dependent (SOD2) catalyzes O(2)(-) in H(2)O(2) into mitochondria and is encoded by a single gene that presents a common polymorphism that results in the replacement of alanine (A) with a valine (V) in the 16 codon. This polymorphism has been implicated in a decreased efficiency of SOD2 transport into targeted mitochondria in V allele carriers. Previous studies described an association between VV genotype and metabolic diseases, including obesity and diabetes. However, the causal mechanisms to explain this association need to be more elucidated. We postulated that the polymorphism could influence the inflammatory response. To test our hypothesis, we evaluated the in vitro cytokines production by human peripheral blood mononuclear cells (PBMCs) carrier's different Ala16Val-SOD2 genotypes (IL-1, IL-6, IL-10, TNF-α, IFN-γ). Additionally, we evaluated if the culture medium glucose, enriched insulin, could influence the cytokine production. Higher levels of proinflammatory cytokines were observed in VV-PBMCs when compared to AA-PBMCs. However, the culture medium glucose and enriched insulin did not affect cytokine production. The results suggest that Ala16Val-SOD2 gene polymorphism could trigger the PBMCs proinflammatory cytokines level. However, discerning if a similar mechanism occurs in fat cells is an open question.  相似文献   
39.
The expression of retinoblastoma (pRb) and cyclin D3 proteins is highly induced during the process of skeletal myoblast differentiation. We have previously shown that cyclin D3 is nearly totally associated with hypophosphorylated pRb in differentiated myotubes, whereas Rb-/- myocytes fail to accumulate the cyclin D3 protein despite normal induction of cyclin D3 mRNA. Here we report that pRb promotes cyclin D3 protein accumulation in differentiating myoblasts by preventing cyclin D3 degradation. We show that cyclin D3 displays rapid turnover in proliferating myoblasts, which is positively regulated through glycogen synthase kinase 3beta (GSK-3beta)-mediated phosphorylation of cyclin D3 on Thr-283. We describe a novel interaction between pRb and cyclin D3 that maps to the C terminus of pRb and to a region of cyclin D3 proximal to the Thr-283 residue and provide evidence that the pRb-cyclin D3 complex formation in terminally differentiated myotubes hinders the access of GSK-3beta to cyclin D3, thus inhibiting Thr-283 phosphorylation. Interestingly, we observed that the ectopic expression of a stabilized cyclin D3 mutant in C2 myoblasts enhances muscle-specific gene expression; conversely, cyclin D3-null embryonic fibroblasts display impaired MyoD-induced myogenic differentiation. These results indicate that the pRb-dependent accumulation of cyclin D3 is functionally relevant to the process of skeletal muscle cell differentiation.  相似文献   
40.
Mesenchymal stem cells are currently considered as a promising tool for therapeutic application in acute kidney injury (AKI) management. AKI is characterized by acute tubular injury with rapid loss of renal function. After AKI, inflammation, oxidative stress and excessive deposition of extracellular matrix are the molecular events that ultimately cause the end-stage renal disease. Despite numerous improvement of supportive therapy, the mortality and morbidity among patients remain high. Therefore, exploring novel therapeutic options to treat AKI is mandatory. Numerous evidence in animal models has demonstrated the capability of mesenchymal stem cells (MSCs) to restore kidney function after induced kidney injury. After infusion, MSCs engraft in the injured tissue and release soluble factors and microvesicles that promote cell survival and tissue repairing. Indeed, the main mechanism of action of MSCs in tissue regeneration is the paracrine/endocrine secretion of bioactive molecules. MSCs can be isolated from several tissues, including bone marrow, adipose tissue, and blood cord; pre-treatment procedures to improve MSCs homing and their paracrine function have been also described. This review will focus on the application of cell therapy in AKI and it will summarize preclinical studies in animal models and clinical trials currently ongoing about the use of mesenchymal stem cells after AKI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号