首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   9篇
  国内免费   24篇
  2023年   4篇
  2022年   6篇
  2021年   3篇
  2020年   3篇
  2019年   7篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   12篇
  2014年   11篇
  2013年   10篇
  2012年   12篇
  2011年   5篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   1篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1992年   1篇
  1989年   1篇
排序方式: 共有137条查询结果,搜索用时 281 毫秒
121.
Three continuous stirred-tank reactors (CSTRs) were used for H(2) production from molasses wastewater at influent pH of 6.0-6.5 (reactor A), 5.5-6.0 (reactor B), or 4.0-4.5 (reactor C). After operation for 28 days, the microbial community formed ethanol type (C), propionate type (A) and ethanol-butyrate-mixed type (B) fermentation. The H(2) production rate was the highest for ethanol type fermentation, 0.40 l (g VSS)(-1) day(-1) or 0.45 l H(2) (g COD removed)(-1). Microbial community dynamics and diversity were analysed using double-gradient denaturing gradient gel electrophoresis (DG-DGGE). Denaturing gradient gel electrophoresis profiles indicated that the community structures changed quickly in the first 14 days. Phylogenetic analysis indicated that the dominant bacterial groups were low G+C Gram-positive bacteria, Bacteroides, gamma-Proteobacteria and Actinobacteria; alpha-Proteobacteria, beta-Proteobacteria, delta-Proteobacteria and Spirochaetes were also presented as minor groups in the three reactors. H(2)-producing bacteria were affiliated with Ethanoligenens, Acetanaerobacterium, Clostridium, Megasphaera, Citrobacter and Bacteroides. An ethanol-based H(2)-producing bacterium, Ethanoligenens harbinense CGMCC1152, was isolated from reactor C and visualized using fluorescence in situ hybridization (FISH) to be 19% of the eubacteria in reactor C. In addition, isoenzyme activity staining for alcohol dehydrogenase (ADH) supported that the majority of ethanol-producing bacteria were affiliated with Ethanoligenens in the microbial community.  相似文献   
122.
A novel synthetic route and anti-HIV activity evaluation of a new series of 2-(4-(2,4-dibromophenyl)-1,2,3-thiadiazol-5-ylthio)acetamide (TTA) derivatives are described. Bioactivity assay indicated that most of the title compounds showed good activities against HIV-1. In particular, compound 7c displayed the most potent anti-HIV-1 activity (EC50 = 36.4 nM), inhibiting HIV-1 replication in MT-4 cells more effectively than NVP (by sevenfold) and DLV (by eightfold). The preliminary structure–activity relationships (SAR) of the newly synthesized congeners are discussed, and molecular modeling of compound 7c in complex with HIV-1 RT is described, allowing rationalization of some SAR conclusions.  相似文献   
123.
The regulation and function of autophagy and lipid metabolism have recently been reported to be reciprocally related. Macroautophagy mediates the breakdown of lipids stored in lipid droplets. An inhibition of autophagy leads to the development of a fatty liver. We evaluated the ability of CYP2E1 to modulate the effects of ethanol on lipid accumulation and autophagy in vitro. The E47 HepG2 cell which expresses CYP2E1 was treated with ethanol at 50, 100 and 150 mM for 4 or 5 days. Ethanol-induced lipid accumulation and an increase of triglycerides (TG) in E47 cells to a greater extent than in control C34 cells which do not express CYP2E1. In contrast, autophagy (LC3 II/LC3 I ratio) was significantly induced by ethanol in C34 cells to a greater extent than in E47 cells. P62 was significantly increased in E47 cells after ethanol treatment. Thus, there is a reciprocal relationship between the effects of ethanol on lipid accumulation and autophagy in the CYP2E1-expressing cells. Inhibition of autophagy by 3-methyladenine (3MA), increased lipid accumulation and TG levels in C34 cells which display elevated autophagy, but enhanced lipid accumulation and TG level to a lesser extent in E47 cells which displayed lower autophagy. Ethanol induced CYP2E1 activity and oxidative stress in E47 cells compared with C34 cells. These experiments suggest that the expression of CYP2E1 may impair autophagy formation which contributes to lipid accumulation in the liver. We hypothesize that CYP2E1-induced oxidative stress promotes the accumulation of lipid droplets by ethanol and this may be responsible for the suppression of autophagy in the liver.  相似文献   
124.
类核沉降法分析247例癌症病人和正常人的DNA修复能力   总被引:1,自引:1,他引:0  
吴德丰  傅明 《遗传学报》1989,16(3):238-243
应用新建立的类核沉降法,分析了108例食管癌、肺癌和卵巢癌患者以及139例正常人DNA修复能力。外周血淋巴细胞受2.5μJ/mm~2紫外线照射后,大多数正常人11小时完成DNA修复,而大多数癌患者17小时尚未能完成修复。  相似文献   
125.
Wang J L  Yu G R  Fang Q X  Jiang D F  Qi H  Wang Q F 《农业工程》2008,28(2):525-533
Photosynthesis coupled with transpiration determines water use efficiency (WUE) at leaf level, and the responses of WUE controlled by gas exchanges through stomata to environment are the basis of carbon and water cycles in the ecosystem. In this paper, by using Li-6400 Portable Photosynthesis System (LI-COR), WUE at leaf level was analyzed under controlled photosynthetic photons flux density (PPFD) and CO2 concentration conditions across 9 plant species including maize (Zea mays), sorghum (Sorghum vulgare), millet (Setaria italica), soybean (Glycine max), peanut (Arachis phyogaea), sweet potato (Ipomoea batatas), rice (Oryza sativa), Masson pine (Pinus massoniana) and Schima superba. We had developed a new model to estimate the water use efficiency in response to the combined effects of light and CO2 concentration. Our measured data validated that this model could simulate the changes of water use efficiency very well under combined effect of light and CO2 concentration. It could be used to estimate contribution of photosynthesis increase and transpiration decline on water use efficiency with the rising of CO2 concentration. Great differences in water use efficiency occurred in these different plant species under various CO2 concentration levels. Based on water use efficiency at regional scale, we concluded that plants should be separated into C3 plants and C4 plants, and furthermore, C3 plants should be separated into herbaceous plants and woody plants. Our separation criteria would do a great favor in modeling the evapotranspiration of terrestrial ecosystem with carbon and water balance.  相似文献   
126.
To study the structure of microbial communities in the biological hydrogen production reactor and determine the ecological function of hydrogen producing bacteria, anaerobic sludge was obtained from the continuous stirred tank reactor (CSTR) in different periods of time, and the diversity and dynamics of microbial communities were investigated by denaturing gradient gel electrophoresis (DGGE). The results of DGGE demonstrated that an obvious shift of microbial population happened from the beginning of star-up to the 28th day, and the ethanol type fermentation was established. After 28 days the structure of microbial community became stable, and the climax community was formed. Comparative analysis of 16S rDNA sequences from reamplifying and sequencing the prominent bands indicated that the dominant population belonged to low G+C Gram-positive bacteria (Clostridium sp. andEthanologenbacterium sp.), β-proteobacteria (Acidovorax sp.), γ-proteobacteria (Kluyvera sp.), Bacteroides (uncultured bacterium SJA-168), and Spirochaetes (uncultured eubacterium E1-K13), respectively. The hydrogen production rate increased obviously with the increase ofEthanologenbacterium sp.,Clostridium sp. and uncultured Spirochaetes after 21 days, meanwhile the succession of ethanol type fermentation was formed. Throughout the succession the microbial diversity increased however it decreased after 21 days. Some types ofClostridium sp.Acidovorax sp.,Kluyvera sp., and Bacteroides were dominant populations during all periods of time. These special populations were essential for the construction of climax community. Hydrogen production efficiency was dependent on both hydrogen producing bacteria and other populations. It implied that the cometabolism of microbial community played a great role of biohydrogen production in the reactors.  相似文献   
127.
Classical tumor suppressor genes block neoplasia by regulating cell growth and death. A remarkable puzzle is therefore presented by familial paraganglioma (PGL), a neuroendocrine cancer where the tumor suppressor genes encode subunits of succinate dehydrogenase (SDH), an enzyme of the tricarboxylic acid (TCA) cycle of central metabolism. Loss of SDH initiates PGL through mechanisms that remain unclear. Could this metabolic defect provide a novel opportunity for chemotherapy of PGL? We report the results of high throughput screening to identify compounds differentially toxic to SDH mutant cells using a powerful S. cerevisiae (yeast) model of PGL. Screening more than 200,000 compounds identifies 12 compounds that are differentially toxic to SDH-mutant yeast. Interestingly, two of the agents, dequalinium and tetraethylthiuram disulfide (disulfiram), are anti-malarials with the latter reported to be a glycolysis inhibitor. We show that four of the additional hits are potent inhibitors of yeast alcohol dehydrogenase. Because alcohol dehydrogenase regenerates NAD+ in glycolytic cells that lack TCA cycle function, this result raises the possibility that lactate dehydrogenase, which plays the equivalent role in human cells, might be a target of interest for PGL therapy. We confirm that human cells deficient in SDH are differentially sensitive to a lactate dehydrogenase inhibitor.  相似文献   
128.
129.
利用昆虫杆状病毒表达系统,成功地对埃博拉(EBOV)扎伊尔型病毒和马尔堡病毒(MARV)的NP基因进行表达。Western blot结果显示,重组EBOV蛋白和重组MARV-NP与各自阳性血清有特异的反应原性,在血清学上无交叉反应。IFA检测感染重组昆虫杆状病毒的Sf9细胞表明,EBOV和MARV NP获得大量表达,呈现强烈的荧光,对照组细胞无特异荧光。该研究为EBOV和MARV流行病学调查和研制诊断试剂盒奠定了基础。  相似文献   
130.
针对点突变癌基因转录物的核酶细胞内性质的研究   总被引:1,自引:1,他引:1  
刘戈  陈雅文 《遗传学报》1996,23(6):477-485
前文[1]已证实在体外(invitro)实验接近生理环境的条件下,本室设计、合成并克隆到的核酶能够高效选择性的定点切割T24-ras活化癌基因转录物。在此基础上,为阐明该核酶在体内(invivo)的生理活性,本文又进一步把核酶基因片段克隆在真核表达质粒pSMG上,并将重组质粒以磷酸钙沉淀法转染由T24-ras基因诱导的转化细胞系。在细胞和分子水平上检测了核酶在真核细胞内的生物学活性:表现为各恶性转化细胞系的形态特征逆转,生长速度减慢,并呈现出重叠生长减弱恢复接触抑制的趋势,细胞凝集行为接近正常、软琼脂集落形成能力下降;同时,引物延伸实验结果也表明:在体内实验条件下,核酶能够特异性切割点突变T24-ras癌基因转录物,抑制癌变细胞的恶性行为,使其得到一定程度的逆转。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号