首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   19篇
  301篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   14篇
  2020年   6篇
  2019年   9篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   21篇
  2014年   20篇
  2013年   25篇
  2012年   29篇
  2011年   30篇
  2010年   13篇
  2009年   12篇
  2008年   10篇
  2007年   20篇
  2006年   12篇
  2005年   12篇
  2004年   6篇
  2003年   12篇
  2002年   7篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
排序方式: 共有301条查询结果,搜索用时 12 毫秒
61.
62.
Pusa RH10, the widely cultivated superfine grain aromatic rice hybrid, and its parental lines Pusa6B and PRR78 are susceptible to bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae. Pusa1460, a Basmati rice variety, was utilized as the donor for introgressing BB resistance genes xa13 and Xa21 into Pusa6B and PRR78 using a marker-assisted backcross breeding program. The markers RG136 and pTA248 linked to BB resistance genes xa13 and Xa21, respectively, were used for foreground selection. Seventy-four STMS markers polymorphic between Pusa6B and Pusa1460, and 54 STMS markers polymorphic between PRR78 and Pusa1460, were utilized for background selection to recover the recurrent parent genome ranging from 85.14 to 97.30% and 87.04 to 92.81% in the 10 best BC2F5 families of Pusa6B and PRR78, respectively. RM6100, an STMS marker linked to fertility restorer gene (Rf), was used for marker-assisted selection of Rf gene in an improved version of PRR78. The extent of donor segments in the improved version of Pusa6B was estimated to be <0.97 and <2.15 Mb in the genomic regions flanking xa13 and Xa21, respectively, whereas in improved PRR78, it was estimated to be <2.07 and <3.45 Mb in the corresponding genomic regions. Improved lines of Pusa6B and PRR78 showed yield advantages of up to 8.24 and 5.23%, respectively. The performance of the BB-resistant version of Pusa RH10 produced by intercrossing the improved parental lines was on a par with or superior to the original Pusa RH10.  相似文献   
63.
64.
In the present study, we evaluated the effect of inhibition of renin activity (aliskiren) on the progression of renal lesions in two different mouse models (Vpr and Tg26) of human immunodeficiency virus (HIV)-associated nephropathy (HIVAN). In protocol A, Vpr mice were fed either water (C-VprA) or doxycycline [Doxy (D-VprA)] in their drinking water for 6 wk. In protocols B and C, Vpr mice received either normal saline (C-VprB/C), Doxy + normal saline (D-VprB/C), or Doxy + aliskiren (AD-VprB/C) for 6 wk (protocol B) or 12 wk (protocol C). In protocols D and E, Vpr mice were fed Doxy for 6 wk followed by kidney biopsy. Subsequently, half of the mice were administered either normal saline (D-VprD/E) or aliskiren (AD-VprD/E) for 4 wk (protocol D) or 8 (protocol E) wk. All D-VprA mice showed renal lesions in the form of focal segmental glomerular sclerosis and dilatation of tubules. In protocols B and C, aliskiren diminished both progression of renal lesions and proteinuria. In protocol C, aliskiren also diminished (P < 0.01) the rise in blood urea. In all groups, Doxy-treated mice displayed increased serum ANG I levels (the product of plasma renin activity); on the other hand, all aliskiren-treated mice displayed diminished serum ANG I levels. Renal tissues of D-VprC displayed increased ANG II content; however, aliskiren attenuated renal tissue ANG II production in AD-VprC. In protocol D, AD-VprD showed a 24.2% increase in the number of sclerosed glomeruli compared with 139.2% increase in sclerosed glomeruli in D-VprD (P < 0.01) from their baseline. The attenuating effect of aliskiren on the progression of renal lesions continued in AD-VprE. Aliskiren also diminished blood pressure, proteinuria, and progression of renal lesions in Tg26 mice. These findings indicate that inhibition of renin activity has a potential to slow down the progression of HIVAN.  相似文献   
65.
This study was aimed at protecting Trigonella plants by reducing stress ethylene levels through ACC (1-aminocyclopropane-1-carboxylic acid) deaminase-containing Bacillus subtilis (LDR2) and promoting plant growth through improved colonization of beneficial microbes like Ensifer meliloti (Em) and Rhizophagus irregularis (Ri) under drought stress. A plant growth-promoting rhizobacterium strain possessing high levels of ACC deaminase characterized as B. subtilis was selected. Application of this strain considerably protected Trigonella plants under severe drought stress conditions; this protection was correlated with reduced levels of ACC (responsible for generation of stress ethylene). The experiment consisted of eight inoculation treatments with different combinations of ACC deaminase-containing rhizobacteria LDR2, Ri, and Em under three water regimes. The tripartite combination of LDR2 + Ri + Em acted synergistically to induce protective mechanisms against decreased soil water availability in Trigonella plants and improved plant weight by 56 % with lower ACC concentration (39 % less than stressed noninoculated plants) under severe drought conditions. Drought-induced changes in biochemical markers like reduced chlorophyll concentration, increased proline content, and higher lipid peroxidation were monitored and clearly indicated the protective effects of LDR2 under drought stress. Under drought conditions, apart from alleviating ethylene-induced damage, LDR2 enhanced nodulation and arbuscular mycorrhizal fungi colonization in the plants resulting in improved nutrient uptake and plant growth.  相似文献   
66.
Availability of Zn to plant is hampered by its immobile nature and adverse soil conditions. Thus, Zn deficiency is observed even though high amount is available in soil. Root-shoot barrier, a major controller of zinc transport in plant is highly affected by changes in the anatomical structure of conducting tissue and adverse soil conditions like pH, clay content, calcium carbonate content, etc. Zn deficiency results in severe yield losses and in acute cases plant death. Zn deficiency in edible plant parts results in micronutrient malnutrition leading to stunted growth and improper sexual development in humans. To overcome this problem several strategies have been used to enrich Zn availability in edible plant parts, including nutrient management, biotechnological tools, and classical and molecular breeding approaches.  相似文献   
67.
Stem cell‐based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial‐based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell‐based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554–567, 2016  相似文献   
68.
Summary Anti-5 methyl cytosine (m5C) antibody was used for immunoaffinity isolation of methylated DNA. DNA from human placenta was digested with restriction enzymes and incubated with anti-5 methyl cytosine antibody column. The unmethylated DNA remained unbound, while the DNA fraction enriched with 5 methyl cytosine was eluted from the column with a NaCl gradient. Methylated DNA is thus enriched from total genomic DNA.  相似文献   
69.
Plasmonics - In the present work, we have investigated the functionalization of protein S-ovalbumin with laser-generated gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using...  相似文献   
70.
Electrospinning is an effective processing method for preparing nanofibers decorated with functional groups. Nanofibers decorated with functional groups may be utilized to study material-biomarker interactions i.e. act as biosensors with potential as single molecule detectors. We have developed an effective approach for preparing functional polymers where the functionality has the capacity of specifically binding with a model protein. In our model system, the functional group is 2,4-dinitrophenyl (DNP) and the protein is anti-DNP IgE (Immunoglobulin E). The functional polymer, α,ω-bi[2,4-dinitrophenyl caproic][poly(ethylene oxide)-b-poly(2-methoxystyrene)-b-poly(ethylene oxide)] (CDNP-PEO-P2MS-PEO-CDNP), is prepared by anionic living polymerization. The difunctional initiator utilized in the polymerization was prepared by electron transfer reaction of α-methylstyrene and potassium (mirror) metal. The 2-methoxystyrene monomer was added first to the initiator, followed by the addition of the second monomer, ethylene oxide, and finally the living polymer was terminated by methanol. The α,ω-dihydroxyl polymer [HO-PEO-P2MS-PEO-OH] was reacted with N-2,4-DNP-∈-amino caproic acid, by DCC coupling, resulting in the formation of α,ω-bi[2,4-dinitrophenylcaproic][poly(ethyleneoxide)-b-poly(2-methoxystyrene)-b-poly(ethylene oxide)] (CDNP-PEO-P2MS-PEO-CDNP). The polymers were characterized by FT-IR, 1H NMR and Gel Permeation Chromatography (GPC). The molecular weight distributions of the polymers were narrow (1.1-1.2) and polymers with molecular weights greater than 50,000 was used in this study. The polymers were yellow powders and soluble in tetrahydrofuran. A water soluble CDNP-PEO-P2MS-PEO-CDNP/ DMEG (dimethoxyethylene glycol) complex binds and achieves steady state binding with solution IgE within a few seconds. Higher molecular weight (water insoluble i.e. around 50,000) CDNP-PEO-P2MS-PEO-CDNP polymers, containing 1% single wall carbon nanotubes (SWCNT) were processed into electroactive nanofibers (100 nm to 500 nm in diameter) on silicon substrate. Fluorescence spectroscopy shows that anti-DNP IgE interacts with the nanofibers by binding with the DNP functional groups decorating the fibers. These observations suggest that appropriately functionalized nanofibers hold promise for developing biomarker detection device.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号