首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   23篇
  346篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   15篇
  2020年   6篇
  2019年   10篇
  2018年   14篇
  2017年   7篇
  2016年   11篇
  2015年   26篇
  2014年   24篇
  2013年   27篇
  2012年   33篇
  2011年   33篇
  2010年   13篇
  2009年   12篇
  2008年   12篇
  2007年   23篇
  2006年   14篇
  2005年   13篇
  2004年   11篇
  2003年   13篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有346条查询结果,搜索用时 37 毫秒
31.
The hypothesis that CgA-derived peptides may be involved in mechanisms modulating motility was tested. Human colonic smooth muscles were studied using an organ bath technique. Acetic acid (AA) effects were characterized on spontaneous mechanical activities (SMA) and on responses to transmural nerve stimulation (NS). AA induced a significant decrease in tone and abolished SMA; this effect was insensitive to either TTX or L-NAME/apamin. The AA-induced inhibitory effects were significantly reduced in the presence of CgA4-16. This effect was insensitive to TTX or L-NAME/apamin. Furthermore, AA-induced effects were blocked in the presence of BAYK8644 and CgA4-16 together. The inhibitory effect of nifedipine was delayed in the presence of CgA4-16. NS induced a triphasic response. Only the excitatory components were reduced in the presence of AA. This effect was dose-related and remained unchanged in the presence of CgA4-16 alone, but was blocked in the presence of simultaneous administration of CgA4-16 and L-NAME/apamin. AA application induced inhibition of human colon motility in vitro. This effect may be mediated through an action on L-type calcium channels. CgA4-16 may display a protective role, which prevents the inhibition of motility due to AA to occur, by acting on both smooth muscle and afferent terminals.  相似文献   
32.
Ribonucleotide reductase (RNR) is the enzyme critically responsible for the production of the 5'-deoxynucleoside-triphosphates (dNTPs), the direct precursors for DNA synthesis. The dNTP levels are tightly controlled to permit high efficiency and fidelity of DNA synthesis. Much of this control occurs at the level of the RNR by feedback processes, but a detailed understanding of these mechanisms is still lacking. Using a genetic approach in the bacterium Escherichia coli, a paradigm for the class Ia RNRs, we isolated 23 novel RNR mutants displaying elevated mutation rates along with altered dNTP levels. The responsible amino-acid substitutions in RNR reside in three different regions: (i) the (d)ATP-binding activity domain, (ii) a novel region in the small subunit adjacent to the activity domain, and (iii) the dNTP-binding specificity site, several of which are associated with different dNTP pool alterations and different mutational outcomes. These mutants provide new insight into the precise mechanisms by which RNR is regulated and how dNTP pool disturbances resulting from defects in RNR can lead to increased mutation.  相似文献   
33.
Although production of microalgae in open ponds is conventionally practiced due to its economy, exposure of the algae to uncontrollable elements impedes achievement of quality and it is desirable to develop closed reactor cultivation methods for the production of high value products. Nevertheless, there are several constraints which affect growth of in closed reactors, some of which this study aims to address for the production of Spirulina. Periodic introduction of fresh medium resulted in increased trichome numbers and improved algal growth compared to growth in medium that was older than 4 weeks in 20 L polycarbonate bottles. Mixing of the cultures by bubbling air and use of draft tube reduced the damage to the growing cells and permitted increased growth. However, there was better growth in inclined cylindrical reactors mixed with bubbling air. The oxygen production rates were very similar irrespective differences in the maintained cultures densities. The uniformity in oxygen production rate suggested a tendency towards homeostasis in Spirulina cultures. The frequency of biomass harvest on the productivity of Spirulina showed that maintenance of moderate culture density between 0.16 and 0.32 g/L resulted in about 14% more productivity than maintaining the cell density between 0.16 and 0.53 g/L or 48% more than by daily harvest above 0.16 g/L. An artificial neural network based predictive model was developed, and the variables useful for predicting biomass output were identified. The model could predict the growth of Spirulina up to 3 days in advance with a coefficient of determination >0.94.  相似文献   
34.
Bioprocess and Biosystems Engineering - In the present study, the effect of irradiance on growth performance of Scenedesmus obliquus was investigated, and various non-linear growth models were...  相似文献   
35.
36.
Treatment of Saccharomyces cerevisiae cells with the immunosuppressive drug rapamycin results in a variety of cellular changes in response to perceived nutrient deprivation. Among other effects, rapamycin treatment results in the nuclear localization of the global nitrogen activators Gln3p and Nil1p/Gat1p, which leads to expression of nitrogen assimilation genes. The proline utilization (Put) pathway genes were shown to be among the genes induced by rapamycin. Having previously shown that the Put pathway activator Put3p is differentially phosphorylated in response to the quality of the nitrogen source, we examined the phosphorylation status of Put3p after rapamycin treatment. Treatment with rapamycin resulted in the hyperphosphorylation of Put3p, which was independent of Gln3p, Nil1p, and Ure2p. The relative contributions of global nitrogen (Gln3p and Nil1p) and pathway-specific (Put3p) activators to rapamycin-induced expression of the target gene PUT1 were also examined. We found that Nil1p and Put3p, but not Gln3p, play major roles in rapamycin-induced PUT1 expression. Our findings show that perceived nitrogen deprivation triggered by rapamycin treatment and steady-state growth in nitrogen-derepressing conditions are associated with hyperphosphorylation of Put3p and increased PUT1 expression. Rapamycin treatment and nitrogen derepression may share some, but not all, regulatory elements, since Gln3p and Nil1p do not participate identically in both processes and are not required for hyperphosphorylation. A complex relationship exists among the global and pathway-specific regulators, depending on the nature and quality of the nitrogen source.  相似文献   
37.
The vagus nerve inhibits the response to systemic administration of endotoxin, and we have recently extended this observation to show that the vagus attenuates acute experimental colitis in mice. The purpose of the present study was to determine whether there is a tonic counterinflammatory influence of the vagus on colitis maintained over several weeks. We assessed disease activity index, macroscopic and histological damage, myeloperoxidase (MPO) activity, and Th1 and Th2 cytokine profiles in chronic colitis induced by administration of dextran sodium sulfate (DSS) in drinking water for three cycles during 5 days with 11 days of rest between each cycle (DSS 3, 2, 2%) in healthy and vagotomized C57BL/6 mice and in mice deficient in macrophage-colony stimulating factor (M-CSF). A pyloroplasty was performed in vagotomized mice. Vagotomy accelerated the onset and the severity of inflammation during the first and second but not the third cycle. Although macroscopic scores were not significantly changed, histological scores as well as MPO activity and colonic tissue levels of IL-1alpha, TNF-alpha, IFN-gamma, and IL-18 but not IL-4 were significantly increased in vagotomized mice compared with sham-operated mice that received DSS. In control mice (without colitis), vagotomy per se did not affect any inflammatory marker. Vagotomy had no effect on the colitis in M-CSF-derived macrophage-deficient mice. These results indicate that the vagus protects against acute relapses on a background of chronic inflammation. Identification of the molecular mechanisms underlying the protective role of parasympathetic nerves opens a new therapeutic avenue for the treatment of acute relapses of chronic inflammatory bowel disease.  相似文献   
38.
39.
BACKGROUND: Granulocytic sarcoma is an extramedullary tumor that is composed of granulocytic precursor cells. We report an unusual case of granulocytic sarcoma of the liver that arose in the background of myeloid metaplasia. Fine needle aspiration cytology (FNAC) was instrumental in making the diagnosis in absence of previously known Hematlogic abnormality. CASE: A 65-year-old woman presented with multiple nodules in the liver. USG-guided FNAC was performed on them. The aspirates showed many myeloid blasts, myelocytes, metamyelocytes, erytbroid precursors and lympboglandular bodies. We considered a differential diagnosis of granulocytic sarcoma and myeloid metaplasia. The presence of erytbroid precursors prompted us to consider myeloid metaplasia as a differential diagnorsis of granulocytic sarcoma. Peripberal smear showed a leukoerytbroblastic reaction. The patient died, and necropsy from the liver revealed extensive infiltration by undfferentiated blast cells with areas of myeloid metaplasia showing maturing erytbroid, myeloid and megakaryocytic elements. CONCLUSION: When a dual population of predominant myeloid blasts and normoblarts is encountered, a suspicion of granulocytic sarcoma arising in a background of myeloid metaplasia must be kept. Cells of all 3 lineages may not be always seen in myeloid metaplasia, and 1 cell line may predominate, causing a diagnostic dilemma.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号