首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   23篇
  国内免费   1篇
  2023年   1篇
  2022年   10篇
  2021年   22篇
  2020年   12篇
  2019年   13篇
  2018年   23篇
  2017年   10篇
  2016年   17篇
  2015年   27篇
  2014年   30篇
  2013年   39篇
  2012年   35篇
  2011年   44篇
  2010年   31篇
  2009年   16篇
  2008年   15篇
  2007年   20篇
  2006年   18篇
  2005年   18篇
  2004年   8篇
  2003年   9篇
  2002年   10篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   8篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1987年   1篇
  1986年   6篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1975年   3篇
  1970年   1篇
排序方式: 共有497条查询结果,搜索用时 31 毫秒
71.

Questions

Water availability is known to be a first‐order driver of plant diversity; yet water also affects fire regimes and soil fertility, which, in turn, affect plant diversity. We examined how precipitation, fire and soil properties jointly determine woody plant diversity. Specifically, we asked how woody plant diversity varies along a sharp precipitation gradient (about 600–1,800 mm mean annual precipitation [MAP ]within a ~45‐km distance) exhibiting considerable variation in long‐term fire burn frequency and soil fertility, in a southern Indian seasonally dry tropical forest (SDTF ) landscape.

Location

Mudumalai, Western Ghats, India.

Methods

Woody plants ≥1‐cm DBH were enumerated in 19 1‐ha permanent plots spanning a range of tropical vegetation types from dry thorn forest, through dry and moist deciduous forest to semi‐evergreen forest. Burn frequencies were derived from annual fire maps. Six measures of surface soil properties – total exchangeable bases (Ca + Mg + K), organic carbon (OC ), total N, pH , plant available P and micronutrients (Fe + Cu + Zn + Mn) were used in the analyses. Five measures of diversity – species richness, Shannon diversity, the rarefied/extrapolated versions of these two measures, and Fisher's α – were modelled as functions of MAP , annual fire burn frequency and the principal components of soil properties.

Results

Most soil nutrients and OC increased with MAP , except in the wettest sites. Woody productivity increased with MAP , while fire frequency was highest at intermediate values of MAP . Woody plant diversity increased with MAP but decreased with increasing fire frequency, resulting in two local diversity maxima along the MAP gradient – in the semi‐evergreen and dry thorn forest – separated by a low‐diversity central region in dry deciduous forest where fire frequency was highest. Soil variables were, on the whole, less strongly correlated with diversity than MAP .

Conclusions

Although woody plant diversity in this landscape, representative of regional SDTF s, is primarily limited by water availability, our study emphasizes the role of fire as a potentially important second‐order driver that acts to reduce diversity in this landscape.
  相似文献   
72.
The nutritional essentialities of transition element vanadium (V) as micro-nutrient in farm animals have not yet been established, though in rat model, vanadium as vanadate has been reported to exert insulin-mimetic effect and shown to be needed for proper development of bones. The objective of this study was to determine the effect of V supplementation on growth performance, plasma hormones and bone health status in calves. Twenty-four crossbred calves (body weight 72.83 ± 2.5 kg; age 3–9 months) were blocked in four groups and randomly assigned to four treatment groups (n = 6) on body weight and age basis. Experimental animals were kept on similar feeding regimen except that different groups were supplemented with either 0, 3, 6 or 9 ppm inorganic V/kg DM. Effect of supplementation during 150-day experimental period was observed on feed intake, body weight gain, feed efficiency, body measures, endocrine variables, plasma glucose and biomarkers of bone health status. Supplementation of V did not change average daily gain (ADG), dry matter intake (DMI), feed efficiency and body measures during the experimental period. During the post-V supplementation period plasma insulin-like growth factor-1 (IGF-1), triiodothyronine (T3) and thyroxin (T4) concentrations were increased and observed highest in 9 mg V/kg DM fed calves; however, levels of insulin, glucose, parathyroid hormone (PTH) and calcitonin hormones remained similar among calves fed on basal or V-supplemented diets. Bone alkaline phosphatase (Bone-ALP) concentration was increased (P < 0.05); however, plasma protein tyrosine phosphatase (PTP) level decreased (P < 0.05) in 6 and 9 mg V/kg DM supplemented groups. Plasma hydroxyproline (Hyp) and tartrate-resistant acid phosphatase (TRAP) concentration were unchanged by V supplementation. Blood V concentration showed positive correlation with supplemental V levels. These results suggest that V may play a role in modulation of the action of certain endocrine variables and biomarkers of bone health status in growing crossbred calves.  相似文献   
73.
Growth, viability and proline content of adapted and unadapted calluses of Nicotiana tabacum L. var. Jayasri, affected due to osmotic stresses and particularly to stress-shocks treated with different osmotica like NaCl (ionic-penetrating), mannitol (non-ionic-penetrating) and polyethylene glycol, (PEG) (non-ionic-non penetrating) were studied to evaluate the physiological differences of stress effects. The tissues adapted to a low concentration of NaCl (85 mM) showed low growth with high proline content compared to the tissues adapted to a low concentration of mannitol (165 mM). Proline content was similar in tissues adapted to high concentrations of NaCl (171 mM) and mannitol (329 mM) but growth in the latter case was relatively low. Growth and viability were subsequently correlated with the pattern of retention in or diffusion of proline out of the tissues after shock-treatments. The loss of tissue viability of the adapted calluses was comparatively less than the unadapted callus even after shock-treatments with 1282 mM NaCl and 823 mM mannitol. The former calluses retained the capability of regrowth though at a slow rate. Such adapted tissues also retained more proline. The mannitol-adapted tissues, when shocked with PEG (200 g l-1), showed low viability with more diffusion and a very little retention of proline while, in the unadapted tissue, all the proline was leached out. The results indicated that the effects of different osmotica on plant tissue varied depending upon the physico-chemical nature of the compounds used as stress-inducing-agents, and retention and diffusion of proline was altered when the tissues were shocked with high concentrations of all these compounds. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
74.
The genes encoding aminoglycoside resistance in Enterococcus faecalis may promote collateral aminoglycoside resistance in polymicrobial wounds. We studied a total of 100 diabetic foot ulcer samples for infection and found 60 samples to be polymicrobial, 5 to be monomicrobial, and 35 samples to be culture negative. A total of 65 E. faecalis isolates were screened for six genes coding for aminoglycoside resistance, antibiotic resistance patterns, and biofilm production. Infectious Diseases Society of America/International Working Group on the Diabetic Foot system was used to classify the wound ulcers. Majority of the subjects with culture-positive wound were recommended conservative management, while 14 subjects underwent amputation. Enterococcal isolates showed higher resistance for erythromycin, tetracycline, and ciprofloxacin. Isolates from grade 3 ulcer showed higher frequency of aac(6′)-Ie-aph(2″)-Ia, while all the isolates were negative for aph(2″)-Ib, aph(2″)-Ic, and aph(2″)-Id. The isolates from grade 3 ulcers showed higher resistance to aminoglycosides as well as teicoplanin and chloramphenicol. All the 39 biofilm producers were obtained from polymicrobial wound and showed higher resistance when compared to biofilm non-producers. Higher frequency of isolates carrying aac(6′)-Ie-aph(2″)-Ia in polymicrobial community showing resistance to key antibiotics suggests widespread distribution of aminoglycoside-resistant E. faecalis and their role in worsening diabetic foot ulcers.  相似文献   
75.
Axl has been a target of interest in the oncology field for several years based on its role in various oncogenic processes. To date, no wild-type Axl crystal structure has been reported. Herein, we describe the structure-based optimization of a novel chemotype of Axl inhibitors, 1H-imidazole-2-carboxamide, using a mutated kinase homolog, Mer(I650M), as a crystallographic surrogate. Iterative optimization of the initial lead compound (1) led to compound (21), a selective and potent inhibitor of wild-type Axl. Compound (21) will serve as a useful compound for further in vivo studies.  相似文献   
76.
77.
Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We characterized the auxin transport and gravitropic phenotypes of the pinoid-9 (pid-9) mutant of Arabidopsis (Arabidopsis thaliana) and tested the hypothesis that phosphorylation mediated by PID kinase and dephosphorylation regulated by the ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1) protein might antagonistically regulate root auxin transport and gravity response. Basipetal indole-3-acetic acid transport and gravitropism are reduced in pid-9 seedlings, while acropetal transport and lateral root development are unchanged. Treatment of wild-type seedlings with the protein kinase inhibitor staurosporine phenocopies the reduced auxin transport and gravity response of pid-9, while pid-9 is resistant to inhibition by staurosporine. Staurosporine and the phosphatase inhibitor, cantharidin, delay the asymmetric expression of DR5∷revGFP (green fluorescent protein) at the root tip after gravistimulation. Gravity response defects of rcn1 and pid-9 are partially rescued by treatment with staurosporine and cantharidin, respectively. The pid-9 rcn1 double mutant has a more rapid gravitropic response than rcn1. These data are consistent with a reciprocal regulation of gravitropism by RCN1 and PID. Furthermore, the effect of staurosporine is lost in pinformed2 (pin2). Our data suggest that reduced PID kinase function inhibits gravitropism and basipetal indole-3-acetic acid transport. However, in contrast to PID overexpression studies, we observed wild-type asymmetric membrane distribution of the PIN2 protein in both pid-9 and wild-type root tips, although PIN2 accumulates in endomembrane structures in pid-9 roots. Similarly, staurosporine-treated plants expressing a PIN2GFP fusion exhibit endomembrane accumulation of PIN2∷GFP, but no changes in membrane asymmetries were detected. Our data suggest that PID plays a limited role in root development; loss of PID activity alters auxin transport and gravitropism without causing an obvious change in cellular polarity.A variety of important growth and developmental processes, including gravity response, embryo and vascular development, and the branching of roots and shoots, are controlled by the directional and regulated transport of auxin in higher plants. Reversible protein phosphorylation is an important regulatory strategy that may modulate auxin transport and dependent processes such as root gravitropism, perhaps through action of the PINOID (PID) kinase (for review, see DeLong et al., 2002; Galvan-Ampudia and Offringa, 2007). PID is an AGC family Ser/Thr kinase (Christensen et al., 2000) and belongs to an AGC kinase clade containing WAG1, WAG2, AGC3-4, and D6PK/AGC1-1 (Santner and Watson, 2006; Galvan-Ampudia and Offringa, 2007; Zourelidou et al., 2009). PID activity has been demonstrated in vitro and in vivo (Christensen et al., 2000; Michniewicz et al., 2007), and several pid mutant alleles exhibit altered auxin transport in the inflorescence and a floral development defect resembling that of auxin transport mutants (Bennett et al., 1995). Overexpression of the PID gene results in profound alterations in root development and responses to auxin transport inhibitors, reduced gravitropism and auxin accumulation at the root tip (Christensen et al., 2000; Benjamins et al., 2001; Michniewicz et al., 2007), as well as enhanced indole-3-acetic acid (IAA) efflux in tobacco (Nicotiana tabacum) cell cultures (Lee and Cho, 2006) and altered PINFORMED1 (PIN1), PIN2, and PIN4 localization patterns (Friml et al., 2004; Michniewicz et al., 2007), consistent with PID being a positive regulator of IAA efflux. However, the effects of pid loss-of-function mutations on auxin transport activities and gravitropic responses in roots have not yet been reported (Robert and Offringa, 2008).In contrast, auxin transport and gravitropism defects of a mutant with reduced protein phosphatase activity have been characterized in detail. The roots curl in naphthylphthalamic acid1 (rcn1) mutation, which ablates the function of a protein phosphatase 2A regulatory subunit, causes reduced PP2A activity in vivo and in vitro (Deruère et al., 1999). Roots and hypocotyls of rcn1 seedlings have elevated basipetal auxin transport (Deruère et al., 1999; Rashotte et al., 2001; Muday et al., 2006), and rcn1 roots exhibit a significant delay in gravitropism, consistent with altered auxin transport (Rashotte et al., 2001; Shin et al., 2005). These data indicate that PP2A is a negative regulator of basipetal transport and suggest that if PID-dependent phosphorylation regulates root auxin transport and gravitropism, then it may act in opposition to PP2A-dependent dephosphorylation.In roots, auxin transport is complex, with distinct sets of influx and efflux carriers that define tissue-specific and opposing directional polarities (for review, see Leyser, 2006). IAA moves acropetally, from the shoot toward the root apex, through the central cylinder (Tsurumi and Ohwaki, 1978), and basipetally, from the root apex toward the base, through the outer layer of cells (for review, see Muday and DeLong, 2001). When plants are reoriented relative to the gravity vector, auxin becomes asymmetrically distributed across the root tip, as a result of a process termed lateral auxin transport (for review, see Muday and Rahman, 2008). Several carriers that mediate root basipetal IAA transport have been clearly defined and include the influx carrier AUXIN-INSENSITIVE1 (AUX1; Marchant et al., 1999; Swarup et al., 2004; Yang et al., 2006) and efflux carriers of two classes, PIN2 (Chen et al., 1998; Müller et al., 1998; Rashotte et al., 2000) and ATP-BINDING CASSETTE TYPE B TRANSPORTER4/MULTIDRUG-RESISTANT4/P-GLYCOPROTEIN4 (ABCB4/MDR4/PGP4; Geisler et al., 2005; Terasaka et al., 2005; Lewis et al., 2007). Lateral transport at the root tip may be mediated by PIN3, an efflux carrier with a gravity-dependent localization pattern (Friml et al., 2002; Harrison and Masson, 2007).Gravitropic curvature of Arabidopsis (Arabidopsis thaliana) roots requires changes in IAA transport at the root tip (for review, see Muday and Rahman, 2008). Auxin transport inhibitors (Rashotte et al., 2000) and mutations in genes encoding basipetal transporters, including aux1 (Bennett et al., 1996), pin2/agr1 (Chen et al., 1998; Müller et al., 1998), and abcb4/mdr4/pgp4 (Lin and Wang, 2005; Lewis et al., 2007), alter gravitropism. Auxin-inducible reporters exhibit asymmetric expression across the root tip prior to differential growth, and this asymmetry is abolished by treatment with auxin transport inhibitors that prevent gravitropic curvature (Rashotte et al., 2001; Ottenschläger et al., 2003). Additionally, the pin3 mutant exhibits slightly reduced rates of gravitropic curvature (Harrison and Masson, 2007), and PIN3 is expressed in the columella cells, which are the site of gravity perception (Blancaflor et al., 1998; Friml et al., 2002). The PIN3 protein relocates to membranes on the lower side of columella cells after gravitropic reorientation, consistent with a role in facilitating asymmetric IAA transport at the root tip (Friml et al., 2002; Harrison and Masson, 2007).The available data suggest a model in which PID and RCN1 antagonistically regulate basipetal transport and gravitropic response in root tips (Fig. 1). In this model, the regions with the highest IAA concentrations in the epidermal and cortical cell layers are indicated by shading, and the arrows indicate the direction and relative amounts of basipetal auxin transport. Our previous work suggests that elevated basipetal IAA transport in rcn1 roots impairs gravitropic response, presumably due to the inability of roots either to form or to perceive a lateral auxin gradient in the context of a stronger polar IAA transport stream (Rashotte et al., 2001). Enhanced basipetal transport may increase the initial auxin concentration along the upper side of the root, impeding the establishment or perception of a gradient in rcn1 and cantharidin-treated wild-type roots (Fig. 1, right). Based on the published pid inflorescence transport data (Bennett et al., 1995), we hypothesize that pid seedling roots and staurosporine-treated wild-type roots have reduced basipetal auxin transport (Fig. 1, left). Upon reorientation of roots relative to the gravity vector, the reduced basipetal IAA transport in pid may lead to slower establishment of an auxin gradient across the root. This model then predicts that cantharidin treatment of pid-9 or staurosporine treatment of rcn1 seedlings would enhance or restore gravitropism in these mutants. Similarly, a double mutant might be expected to exhibit a corrected gravitropic response relative to the single mutants.Open in a separate windowFigure 1.Auxin transport defects in pid-9 and rcn1 mutants alter auxin redistribution after reorientation relative to the gravity vector. This model predicts that differences in basipetal auxin transport activities of wild-type, pid-9, and rcn1 roots will affect the formation of lateral auxin gradients. The shaded area in each root represents the region of highest IAA concentration in epidermal and cortical cells, with darker shading in the central columella cells, believed to be the auxin maxima. The direction and amount of basipetal IAA transport are indicated by arrows. The region of differential growth during gravitropic bending is indicated by the shaded rectangle. If auxin transport is reduced (as shown in the pid-9 mutant or in staurosporine-treated seedlings), this would lead to a slower formation of an auxin gradient in root tips. The rcn1 mutation (or treatment with cantharidin) has already been shown to lead to increased basipetal transport and a reduced rate of gravitropic bending, consistent with altered formation or perception of an auxin gradient. The antagonistic effects of kinase and phosphatase inhibition are predicted to lead to normal gravity responses in the pid-9 rcn1 double mutant as well as in pid-9 and rcn1 single mutants treated with the “reciprocal” inhibitor.The experiments described here were designed to test this model by examining gravitropism and root basipetal IAA transport in pid and staurosporine-treated seedlings. We investigated the regulation of gravity response by PID kinase and RCN1-dependent PP2A activities and observed antagonistic interactions between the rcn1 and pid-9 loss-of-function phenotypes that are consistent with reciprocal kinase/phosphatase regulation. We found that loss of kinase activity in the pid mutant and in staurosporine-treated wild-type plants inhibits basipetal auxin transport and the dependent physiological process of root gravitropism. Our results suggest that staurosporine acts to regulate these processes through inhibition of PID kinase and that PID effects are PIN2 dependent. In both wild-type and pid-9 roots, we observed polar membrane distribution of the PIN2 protein; unlike wild-type roots, though, pid-9 roots exhibited modest accumulation of PIN2 in endomembrane structures. Similarly, we detected asymmetric distribution and endomembrane accumulation of PIN2∷GFP in staurosporine-treated roots. Our data suggest that PID plays a limited role in root development; loss of PID activity alters PIN2 trafficking, auxin transport, and gravitropism without causing an obvious loss of cellular polarity. Together, these experiments provide insight into phosphorylation-mediated control of the gravity response and auxin transport in Arabidopsis roots.  相似文献   
78.
Fed-batch culture strategy is often used for increasing production of heterologous recombinant proteins in Escherichia coli. This study was initiated to investigate the effects of dissolved oxygen concentration (DOC), complex nitrogen sources and pH control agents on cell growth and intracellular expression of streptokinase (SK) in recombinant E. coli BL21(DE3). Increase in DOC set point from 30% to 50% did not affect SK expression in batch culture where as similar increase in fed-batch cultivation led to a significant improvement in SK expression (from 188 to 720 mg l−1). This increase in SK could be correlated with increase in plasmid segregational stability. Supplementation of production medium with yeast extract and tryptone and replacement of liquid ammonia with NaOH as pH control agent further enhanced SK expression without affecting cell growth. Overall, SK concentration of 1120 mg l−1 representing 14-fold increase in SK production on process scale-up from flask to bioreactor scale fed-batch culture is the highest reported concentration of SK to date.  相似文献   
79.

Background

During pregnancy asthma may remain stable, improve or worsen. The factors underlying the deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway smooth muscle (HASMCs) function in the presence and absence of IL-13 and TNFα, cytokines known to be important in asthma.

Method

Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings and precision cut lung slices (PCLS) were used to measure contractile responses. Finally, ELISA was used to compare oxytocin levels in the bronchoalveloar lavage (BAL) samples from healthy subjects and those with asthma.

Results

PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both interleukin (IL)-13 and tumor necrosis factor (TNFα) stimulate a time-dependent increase in OXTR expression at 6 and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in cells treated for 24 hr with IL-13. Interestingly, TNFα had little effect on oxytocin-induced calcium response despite increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL) fluid derived from healthy subjects as well as from those with asthma.

Conclusion

Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in HASMCs suggesting a potential role for inflammation-induced changes in oxytocin receptor signaling in the regulation of airway hyper-responsiveness in asthma.  相似文献   
80.
β-Carotene, abundant majorly in carrot, pink guava yams, spinach, kale, sweet potato, and palm oil, is an important nutrient for human health due to its scavenging action upon reactive free radicals wherever produced in the body. Inclusion of liposoluble β-carotene in foods and food ingredients is a challenging aspect due to its labile nature and low absorption from natural sources. This fact has led to the application of encapsulation of β-carotene to improve stability and bioavailability. The present work was aimed to fabricate microcapsules (MCs) of β-carotene oily dispersion using the complex coacervation technique with casein (CA) and guar gum (GG) blend. The ratio of CA:GG was found to be 1:0.5 (w/v) when optimized on the basis of zeta potential-yield stress phenomenon. These possessed a higher percentage yield (71.34 ± 0.55%), lower particle size (176.47 ± 4.65 μm), higher encapsulation efficiency (65.95 ± 5.33%), and in general, a uniform surface morphology was observed with particles showing optimized release behavior. Prepared MCs manifested effective and controlled release (up to 98%) following zero-order kinetics which was adequately explained by the Korseymer-Peppas model. The stability of the freeze-dried MCs was established in simulated gastrointestinal fluids (SGF, SIF) for 8 h. Antioxidant activity of the MCs was studied and revealed the retention of the functional architecture of β-carotene in freeze-dried MCs. Minimal photolytic degradation upon encapsulation of β-carotene addressed the challenge regarding photo-stability of β-carotene as confirmed via mass spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号