首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   7篇
  302篇
  2024年   2篇
  2023年   2篇
  2022年   9篇
  2021年   16篇
  2020年   11篇
  2019年   12篇
  2018年   20篇
  2017年   9篇
  2016年   14篇
  2015年   19篇
  2014年   22篇
  2013年   25篇
  2012年   22篇
  2011年   30篇
  2010年   14篇
  2009年   8篇
  2008年   7篇
  2007年   10篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   5篇
  1986年   4篇
  1981年   1篇
  1972年   2篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
91.
Many methods of synthesizing silver nanoparticles (Ag-NPs) by reducing Ag+ ions using aqueous/organic extracts of various plants have been reported in the past, but the methods are rather slow. In this investigation, silver nanoparticles were quickly synthesized from aqueous silver nitrate through a simple method using leaf extract of a plant—Cynodon dactylon which served as reducing agent, while sunlight acted as a catalyst. The formation of Ag-NPs was indicated by gradual change in colour and pH and confirmed by ultraviolet–visible spectroscopy. The Ag-NPs showed a surface plasmon resonance at 451 nm. Based on the decrease in pH, a possible mechanism of the synthesis of Ag-NPs involving hydroxyl (OH?) ions of polyphenols of the leaf extract is postulated. Ag-NPs having (111) and (200) crystal lattices were confirmed by X-ray diffraction. Scanning electron microscopy revealed the spherical nature of the Ag-NPs, while transmission electron microscopy showed that the nanoparticles were polydispersed with a size range of 8–10 nm. The synthesized Ag-NPs also demonstrated their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella typhimurium.  相似文献   
92.
Nostoc ellipsosporum is a highly potent cyanobacterium for production of pharmaceutically important chemicals. In this study, an effort has been made to determine the effect of glucose and phytohaemagglutinin (PHA) rich Phaseolus vulgaris extract on N. ellipsosporum growth and protein production. Maximum growth was observed in Fog’s medium supplemented with glucose. SEM analysis showed that the regular and well developed heterocysts were observed in Fog’s media supplemented with glucose. Significant medium components were evaluated by Plackett–Burman (PB) design and PHA extract was found to be the most significant in growth medium. Results of this study showed that both glucose and PHA rich P. vulgaris extract have positive effects and enhance the growth and protein synthesis.  相似文献   
93.
Fms-like tyrosine kinase 3 (FLT3) plays an important role in hematopoietic differentiation, and constitutively active FLT3 mutant proteins contribute to the development of acute myeloid leukemia. Little is known about the protein-tyrosine phosphatases (PTP) affecting the signaling activity of FLT3. To identify such PTP, myeloid cells expressing wild type FLT3 were infected with a panel of lentiviral pseudotypes carrying shRNA expression cassettes targeting different PTP. Out of 20 PTP tested, expressed in hematopoietic cells, or presumed to be involved in oncogenesis or tumor suppression, DEP-1 (PTPRJ) was identified as a PTP negatively regulating FLT3 phosphorylation and signaling. Stable 32D myeloid cell lines with strongly reduced DEP-1 levels showed site-selective hyperphosphorylation of FLT3. In particular, the sites pTyr-589, pTyr-591, and pTyr-842 involved in the FLT3 ligand (FL)-mediated activation of FLT3 were hyperphosphorylated the most. Similarly, acute depletion of DEP-1 in the human AML cell line THP-1 caused elevated FLT3 phosphorylation. Direct interaction of DEP-1 and FLT3 was demonstrated by "substrate trapping" experiments showing association of DEP-1 D1205A or C1239S mutant proteins with FLT3 by co-immunoprecipitation. Moreover, activated FLT3 could be dephosphorylated by recombinant DEP-1 in vitro. Enhanced FLT3 phosphorylation in DEP-1-depleted cells was accompanied by enhanced FLT3-dependent activation of ERK and cell proliferation. Stable overexpression of DEP-1 in 32D cells and transient overexpression with FLT3 in HEK293 cells resulted in reduction of FL-mediated FLT3 signaling activity. Furthermore, FL-stimulated colony formation of 32D cells expressing FLT3 in methylcellulose was induced in response to shRNA-mediated DEP-1 knockdown. This transforming effect of DEP-1 knockdown was consistent with a moderately increased activation of STAT5 upon FL stimulation but did not translate into myeloproliferative disease formation in the 32D-C3H/HeJ mouse model. The data indicate that DEP-1 is negatively regulating FLT3 signaling activity and that its loss may contribute to but is not sufficient for leukemogenic cell transformation.  相似文献   
94.
The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.  相似文献   
95.
High throughput sequencing technologies, supported by bioinformatics tools are employed to retrieve small RNA sequence information derived from the nucleic acids of plant infecting viruses. In addition to characterization of the small RNAs to understand the biology of the virus, the small RNA sequence can be assembled to reconstitute viral genome sequence. For the first time the semiconductor based Ion Proton sequencing technology is used to sequence the small RNAs from pigeonpea (Cajanus cajan) plants infected by two distinct viruses with RNA and DNA as their genomes. The reconstitution of the viral genome sequence revealed that the pigeonpea plant from Kalaburagi (erstwhile Gulbarga, Karnataka state) was infected by an emaravirus species Pigeonpea sterility mosaic emaravirus 1 (PPSMV-1) and another plant from New Delhi was infected by a begomovirus species Mungbean yellow mosaic India virus (MYMIV). Characterization and comparison of small RNA sequences derived from both the viruses showed vast differences in their pattern of accumulation and their size classes. In the case of PPSMV-1, the 21 nt sized siRNAs accumulated at far greater levels followed by 22 and 24 nt siRNAs. Whereas in MYMIV, the proportion of accumulation of each size class of siRNAs was similar. Further the distribution of small RNAs across the genomes of PPSMV-1 and MYMIV was mapped and the density of small RNA accumulation showed a positive correlation with the GC content of viral sequence.  相似文献   
96.
The anti-apoptotic protein Bcl-2 is a well-known and attractive therapeutic target for cancer. In the present study the solution-phase T3P-DMSO mediated efficient synthesis of 2-amino-chromene-3-carbonitriles from alcohols, malanonitrile and phenols is reported. These novel 2-amino-chromene-3-carbonitriles showed cytotoxicity in human acute myeloid leukemia (AML) cell lines. Compound 4g was found to be the most bioactive, decreasing growth and increasing apoptosis of AML cells. Moreover, compound 4g (at a concentration of 5 µM) increased the G2/M and sub-G1 (apoptosis) phases of AML cells. The AML cells treated with compound 4g exhibited decreased levels of Bcl-2 and increased levels of caspase-9. In silico molecular interaction analysis showed that compound 4g shared a similar global binding motif with navitoclax (another small molecule that binds Bcl-2), however compound 4g occupies a smaller volume within the P2 hot spot of Bcl-2. The intermolecular π-stacking interaction, direct electrostatic interactions, and docking energy predicted for 4g in complex with Bcl-2 suggest a strong affinity of the complex, rendering 4g as a promising Bcl-2 inhibitor for evaluation as a new anticancer agent.  相似文献   
97.
A computational neural model that describes the competing roles of Basal Ganglia and Hippocampus in spatial navigation is presented. Model performance is evaluated on a simulated Morris water maze explored by a model rat. Cue-based and place-based navigational strategies, thought to be subserved by the Basal ganglia and Hippocampus respectively, are described. In cue-based navigation, the model rat learns to directly head towards a visible target, while in place-based navigation the target position is represented in terms of spatial context provided by an array of poles placed around the pool. Learning is formulated within the framework of Reinforcement Learning, with the nigrostriatal dopamine signal playing the role of Temporal Difference Error. Navigation inherently involves two apparently contradictory movements: goal oriented movements vs. random, wandering movements. The model hypothesizes that while the goal-directedness is determined by the gradient in Value function, randomness is driven by the complex activity of the SubThalamic Nucleus (STN)-Globus Pallidus externa (GPe) system. Each navigational system is associated with a Critic, prescribing actions that maximize value gradients for the corresponding system. In the integrated system, that incorporates both cue-based and place-based forms of navigation, navigation at a given position is determined by the system whose value function is greater at that position. The proposed model describes the experimental results of [1], a lesion-study that investigates the competition between cue-based and place-based navigational systems. The present study also examines impaired navigational performance under Parkinsonian-like conditions. The integrated navigational system, operated under dopamine-deficient conditions, exhibits increased escape latency as was observed in experimental literature describing MPTP model rats navigating a water maze.  相似文献   
98.
Abstract

Impact of root Cd concentration on production of cysteine, non-protein thiols (NP-SH), glutathione (GSH), reduced glutathione (GSSG), and phytochelatins (PCs) in Eichhornia crassipes exposed to different dilutions of brass and electroplating industry effluent (25%, 50%, and 75%), and synthetic metal solutions of Cd alone (1, 2.5, and 3.5?ppm) and with Cr (1?ppm Cd + 1?ppm Cr, 2.5?ppm Cd + 3?ppm Cr, and 3.5?ppm Cd + 4?ppm Cr) was assessed in a 45?days study. Different treatments were used to understand and compare differential antioxidant defense response of plant under practical drainage (effluent) and experimental synthetic solutions. The production of NP-SH and cysteine was maximum under 2.5?ppm Cd + 3?ppm Cr treatments i.e., 1.78?µmol/g fw and 288?nmol/g fw, respectively. The content of GSH declined whereas that of GSSG increased progressively with exposure duration in all treatments. HPLC chromatograms revealed that the concentrations of PC2, PC3, and PC4 (248, 250, and 288?nmol-SH equiv.g?1 fw, respectively) were maximum under 1?ppm Cd, 1?ppm Cd + 1?ppm Cr, and 2.5?ppm Cd + 3?ppm Cr treatments, respectively. PC2, PC3, and PC4 concentrations increased with Cd accumulation in the range 812–1354?µg/g dry wt, 1354–2032?µg/g dry wt and 2032–3200?µg/g dry wt, respectively. Thus, the study establishes a direct proportionality relationship between concentration/length of phytochelatins and root Cd concentrations, upto threshold limits, in E. crassipes.  相似文献   
99.
A novel polypyridyl ligand CNPFIP (CNPFIP = 2-(5(4-chloro-2-nitrophenyl)furan-2-yl)-1H-imidazo[4,5f][1,10]phenanthroline) and its mononuclear Ru(II) polypyridyl complexes of [Ru(phen)2CNPFIP]2+(1) (phen = 1,10-phenanthroline), [Ru(bpy)2CNPFIP]2+(2) (bpy = 2,2′-bipyridine), and [Ru(dmb)2CNPFIP]2+(3) (dmb = 4,4′-dimethyl-2,2′-bipyridine) have been synthesized successfully and characterized thoroughly by elemental analysis, UV/Vis, IR, NMR, and ESI-MS. The interaction of the Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption titration, fluorescence, viscosity measurements. The experimental results suggest that three complexes bind to CT-DNA through an intercalative mode and the DNA-binding affinity of complex 1 is greater than that of complexes 2 and 3. The photocleavage of plasmid pBR322 DNA by ruthenium complexes 1, 2, and 3 was investigated. We have also tested three complexes for their antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The in vitro cytotoxicity of these complexes was evaluated by MTT assay, and complex 1 shows higher cytotoxicity than 2 and 3 on HeLa cells. The induced apoptosis and cell cycle arrest of HeLa cells were investigated by flow cytometry for 24 h. The molecular docking of ruthenium complexes 1, 2, and 3 with the active site pocket residues of human DNA TOP1 was performed using LibDock.  相似文献   
100.

Background

Majority of bladder cancer deaths are caused due to transitional cell carcinoma (TCC) which is the most prevalent and chemoresistant malignancy of urinary bladder. Therefore, we analyzed the role of Sperm associated antigen 9 (SPAG9) in bladder TCC.

Methodology and Findings

We examined SPAG9 expression and humoral response in 125 bladder TCC patients. Four bladder cancer cell lines were assessed for SPAG9 expression. In addition, we investigated the effect of SPAG9 ablation on cellular proliferation, cell cycle, migration and invasion in UM-UC-3 bladder cancer cells by employing gene silencing approach. Our SPAG9 gene and protein expression analysis revealed SPAG9 expression in 81% of bladder TCC tissue specimens. High SPAG9 expression (>60% SPAG9 positive cells) was found to be significantly associated with superficial non-muscle invasive stage (P = 0.042) and low grade tumors (P = 0.002) suggesting SPAG9 putative role in early spread and tumorigenesis. Humoral response against SPAG9 was observed in 95% of patients found positive for SPAG9 expression. All four bladder cancer cell lines revealed SPAG9 expression. In addition, SPAG9 gene silencing in UM-UC-3 cells resulted in induction of G0–G1 arrest characterized by up-regulation of p16 and p21 and consequent down-regulation of cyclin E, cyclin D and cyclin B, CDK4 and CDK1. Further, SPAG9 gene silencing also resulted in reduction in cellular growth, and migration and invasion ability of cancer cells in vitro.

Conclusions

Collectively, our data in clinical specimens indicated that SPAG9 is potential biomarker and therapeutic target for bladder TCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号