首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   7篇
  302篇
  2024年   2篇
  2023年   2篇
  2022年   9篇
  2021年   16篇
  2020年   11篇
  2019年   12篇
  2018年   20篇
  2017年   9篇
  2016年   14篇
  2015年   19篇
  2014年   22篇
  2013年   25篇
  2012年   22篇
  2011年   30篇
  2010年   14篇
  2009年   8篇
  2008年   7篇
  2007年   10篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   5篇
  1986年   4篇
  1981年   1篇
  1972年   2篇
排序方式: 共有302条查询结果,搜索用时 0 毫秒
31.
The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na(2)CO(3) + 2.5% Ca(OH)(2) (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 L/kg WH/d at 35-37 degrees C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by closed methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 L/kg WH/d at 35-37 degrees C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.  相似文献   
32.
The downstream processing of recombinant streptokinase (rSK), a protein used for dissolution of blood clots has been investigated employing Escherichia coli inclusion bodies obtained after direct chemical extraction followed by expanded bed adsorption chromatography (EBAC). Streptokinase was over-expressed using high cell density (final OD(600)=40) culture of recombinant E. coli, and an SK protein concentration of 1080 mg l(-1) was achieved. The wet cell pellet after centrifugation was re-suspended in 8M urea containing buffer resulting in direct extraction of almost 97% of cellular proteins into solution. Compared to mechanical disruption using sonication, the direct extraction helped in simultaneous cell lysis and inclusion body (IB) solubilization in a single integrated step. The post-extraction solution containing cell debris and cellular proteins was diluted and directly loaded on to an EBAC column containing Streamline phenyl, without clarification. By passing the solution four times through the column and using 1M NaCl during loading, 82.7% rSK activity could be recovered in the 10mM sodium phosphate buffer used for elution. A 3-fold increase in specific activity of rSK, from 0.18 x 10(5) in cell lysate to 0.53 x 10(5)IU mg(-1) resulted after this step. rSK was further purified to near-homogeneity (specific activity=0.96 x 10(5)IU mg(-1)) by a subsequent ion-exchange step operated in packed bed mode. An overall downstream recovery of 63% rSK was achieved after EBAC and ion exchange chromatography. The paper thus describes the purification of rSK using a three-step regime involving simple, efficient and highly facile steps.  相似文献   
33.
Recent report from this lab has shown role of Rac2 in the translocation of inducible nitric oxide synthase (iNOS) to the phagosomal compartment of polymorphonuclear leukocytes (PMNs) following phagocytosis of beads. This study was undertaken to further assess the status and role of tetrahydrobiopterin (BH4), a redox-sensitive cofactor, L-arginine, and the substrate of nitric oxide synthase (NOS) in sustained nitric oxide (˙NO) production in killing of phagocytosed microbes (Escherichia coli) by human PMNs. Time-dependent study revealed consistent NO and reactive oxygen species (ROS) production in the PMNs following phagocytosis of beads. In addition, levels of L-arginine and BH4 were maintained or increased simultaneously to support the enzymatic activity of NOS in the bead activated PMNs. Moreover, translocation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) subunits along with iNOS was reconfirmed in the isolated phagosomes. We demonstrate that increase in the level of NO was supported by L-arginine and BH4 to kill E. coli, by using PMNs from NOS2?/? mice, human PMNs treated with biopterin inhibitor, N-acetyl serotonin (NAS), or by suspending human PMNs in L-arginine deficient medium. Altogether, this study demonstrates that following phagocytosis, sustained. NO production in the PMNs was well-maintained by redox sensitive cofactor, BH4 and substrate, and L-arginine to enable microbial killing. Further results suggest NO production in the human PMNs, along with ROS and myeloperoxidase (MPO) is important to execute antimicrobial activity.  相似文献   
34.
Ephedra foliata Boiss. & Kotschy ex Boiss., (family – Ephedraceae), is an ecologically and economically important threatened Gymnosperm of the Indian Thar Desert. A method for micropropagation of E. foliata using nodal explant of mature female plant has been developed. Maximum bud-break (90 %) of the explant was obtained on MS medium supplemented with 1.5 mg l−1 of benzyl adenine (BA) + additives. Explant produces 5.3 ± 0.40 shoots from single node with 3.25 ± 0.29 cm length. The multiplication of shoots in culture was affected by salt composition of media, types and concentrations of plant growth regulators (PGR’s) and their interactions, time of transfer of the cultures. Maximum number of shoots (26.3 ± 0.82 per culture vessel) were regenerated on MS medium modified by reducing the concentration of nitrates to half supplemented with 200 mg l−1 ammonium sulphate {(NH4) 2SO4} (MMS3) + BA (0.25 mg l−1), Kinetin (Kin; 0.25 mg l−1), Indole-3-acetic acid (IAA; 0.1 mg l−1) and additives. The in vitro produced shoots rooted under ex vitro on soilrite moistened with one-fourth strength of MS macro salts in screw cap bottles by treating the shoot base (s) with 500 mg l−1 of Indole-3-butyric acid (IBA) for 5 min. The micropropagated plants were hardened in the green house. The described protocol can be applicable for (i) large scale plant production (ii) establishment of plants in natural habitat and (iii) germplasm conservation of this endemic Gymnosperm of arid regions.  相似文献   
35.
The role of oxidative stress is often attributed in environmental renal diseases. Isocyanates, a ubiquitous chemical group with diverse industrial applications, are known to undergo bio-transformation reactions upon accidental and occupational exposure. This study delineates the role of isocyanate-mediated mitochondrial oxidative stress in eliciting chromosomal instability in cultured human kidney epithelial cells. Cells treated with 0.005 µM concentration of methyl isocyanate displayed morphological transformation and stress-induced senescence. Along the time course, an increase in DCF fluorescence indicative of oxidative stress, depletion of superoxide dismutase (SOD) and glutathione reductase (GR) and consistent accumulation of 8-oxo-dG were noticed. Thus, endogenous oxidative stress resulted in aberrant expression of p53, p21, cyclin E and CDK2 proteins, suggestive of deregulated cell cycle, chromosomal aberrations, centromeric amplification, aneuploidy and genomic instability.  相似文献   
36.
Reactions of Sr(II) and Ba(II) chlorides with 2-hydroxybenzophenone and salicylaldehyde, hydroxyaromatic ketones or β-diketones in 1:1:1 molar ratios have resulted in the formation of mixed ligand complexes of the type [MLL′(H2O)2] (M = Sr(II) or Ba(II); HL = 2-hydroxybenzophenone and HL′ = salicylaldehyde, 2-hydroxyacetophenone, 2-hydroxypropiophenone, pentane-2,4-dione, 1-phenylbutane-1,3-dione or 1,3-diphenylpropane-1,3-dione). These complexes have been characterized by elemental analyses, TLC, IR and 1H NMR spectroscopy.  相似文献   
37.
38.
The plastidic C4 Zea mays NADP-malate dehydrogenase (ZmNADP-MDH), responsible for catalysis of oxaloacetate to malate, was overexpressed in Arabidopsis thaliana to assess its impact on photosynthesis and tolerance to salinity stress. Different transgenic lines were produced having ~3–6-fold higher MDH protein abundance and NADP-MDH enzyme activity than vector control. The overexpressors had similar chlorophyll, carotenoid, and protein content as that of vector control. Their photosynthetic electron transport rates, carbon assimilation rate, and consequently fresh weight and dry weight were almost similar. However, these overexpressors were tolerant to salt stress (150 mM NaCl). In saline environment, the Fv/Fm ratio, yield of photosystem II, chlorophyll, and protein content were higher in ZmNADP-MDH overexpressor than vector control. Under identical conditions, the generation of reactive oxygen species (H2O2) and production of malondialdehyde, a membrane lipid peroxidation product, were lower in overexpressors. In stress environment, the structural distortion of granal organization and swelling of thylakoids were less pronounced in ZmNADP-MDH overexpressing plants as compared to the vector control. Chloroplastic NADP-MDH in consort with cytosolic and mitochondrial NAD-MDH plays an important role in exporting reducing power (NADPH) and exchange of metabolites between different cellular compartments that maintain the redox homeostasis of the cell via malate valve present in chloroplast envelope membrane. The tolerance of NADP-MDH overexpressors to salt stress could be due to operation of an efficient malate valve that plays a major role in maintaining the cellular redox environment.  相似文献   
39.
Procathepsin D (pCD) is a glycoprotein secreted abundantly by cancerous cells with a documented role in tumor development. The levels of pCD in primary tumors are highly correlated with an increased incidence of metastasis. Our earlier studies have shown that pCD exerts its effect on cancer cells through its activation peptide (AP) and involves both autocrine and paracrine modes of action. In this study, we analyzed the expression and role of pCD in MDA-MB-231 and its derived cell lines 1833 and 4175 possessing discrete metastatic abilities. Our results demonstrated a direct relationship between expression and secretion of pCD to the differential invasive potential of these cells. Also, the cell lines responded to AP treatment by enhancing their invasive potential, proliferation and induction of secretion of various cytokines, suggesting that pCD plays a role in metastasis through its AP region.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号