排序方式: 共有245条查询结果,搜索用时 15 毫秒
181.
Mark S. Ou Deepika Awasthi Ismael Nieves Liang Wang John Erickson Wilfred Vermerris L. O. Ingram K. T. Shanmugam 《Bioenergy Research》2016,9(1):123-131
Sweet sorghum is a bioenergy crop that produces large amounts of soluble sugars in its stems (3–7 Mg ha?1) and generates significant amounts of bagasse (15–20 Mg ha?1) as a lignocellulosic feedstock. These sugars can be fermented not only to biofuels but also to bio-based chemicals. The market potential of the latter may be higher given the current prices of petroleum and natural gas. The yield and rate of production of optically pure d-(?)- and l-(+)-lactic acid as precursors for the biodegradable plastic polylactide was optimized for two thermotolerant Bacillus coagulans strains. Strain 36D1 fermented the sugars in unsterilized sweet sorghum juice at 50 °C to l-(+)-lactic acid (~150 g L?1; productivity, 7.2 g L?1 h?1). B. coagulans strain QZ19-2 was used to ferment sorghum juice to d-(?)-lactic acid (~125 g L?1; productivity, 5 g L?1 h?1). Carbohydrates in the sorghum bagasse were also fermented after pretreatment with 0.5 % phosphoric acid at 190 °C for 5 min. Simultaneous saccharification and co-fermentation of all the sugars (SScF) by B. coagulans resulted in a conversion of 80 % of available carbohydrates to optically pure lactic acid depending on the B. coagulans strain used as the microbial biocatalyst. Liquefaction of pretreated bagasse with cellulases before SScF (L + SScF) increased the productivity of lactic acid. These results show that B. coagulans is an effective biocatalyst for fermentation of all the sugars present in sweet sorghum juice and bagasse to optically pure lactic acid at high titer and productivity as feedstock for bio-based plastics. 相似文献
182.
Arash Boroumand Nasr Deepika Ponnala Someshwar Rao Sagurthi Ramesh Kumar Kattamuri Vijaya Kumar Marri Suresh Gudala Chandana Lakkaraju Srinivas Bandaru Anuraj Nayarisseri 《Bioinformation》2015,11(6):307-315
Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, proliferation and angiogenesis. mTOR signaling is
frequently hyper activated in a broad spectrum of human cancers thereby making it a potential drug target. The current drugs
available have been successful in inhibiting the mTOR signaling, nevertheless, show low oral bioavailability and suboptimal
solubility. Considering the narrow therapeutic window of the available inhibitors, through computational approaches, the present
study pursues to identify a compound with optimal oral bioavailability and better solubility properties in addition ensuing high
affinity between FKBP12 and FRB domain of mTOR. Current mTOR inhibitors; Everolimus, Temsirolimus Deforolimus and
Echinomycin served as parent molecules for similarity search with a threshold of 95%. The query molecules and respective similar
molecules were docked at the binding cleft of FKBP12 protein. Aided by MolDock algorithm, high affinity compounds against
FKBP12 were retrieved. Patch Dock supervised protein-protein interactions were established between FRB domain of mTOR and
ligand (query and similar) bound and free states of FKBP12. All the similar compounds thus retrieved showed better solubility
properties and enabled better complex formation of mTOR and FKBP12. In particular Everolimus similar compound PubChem ID:
57284959 showed appreciable drugs like properties bestowed with better solubility higher oral bioavailability. In addition this
compound brought about enhanced interaction between FKBP12 and FRB domain of mTOR. In the study, we report Everolimus
similar compound PubChem ID: 57284959 to be potential inhibitor for mTOR pathway which can overcome the affinity and
solubility concerns of current mTOR drugs.
Abbreviations
mTOR - Mammalian Target of Rapamycin, FRB domain - FKBP12-rapamycin associated protein, FKBP12 - FK506-binding protein 12, OPLS - Optimized Potentials for Liquid Simulations, Akt - RAC-alpha serine/threonine-protein kinase, PI3K - phosphatidylinositide 3-kinases. 相似文献183.
Yudin D Hanz S Yoo S Iavnilovitch E Willis D Gradus T Vuppalanchi D Segal-Ruder Y Ben-Yaakov K Hieda M Yoneda Y Twiss JL Fainzilber M 《Neuron》2008,59(2):241-252
Peripheral sensory neurons respond to axon injury by activating an importin-dependent retrograde signaling mechanism. How is this mechanism regulated? Here, we show that Ran GTPase and its associated effectors RanBP1 and RanGAP regulate the formation of importin signaling complexes in injured axons. A gradient of nuclear RanGTP versus cytoplasmic RanGDP is thought to be fundamental for the organization of eukaryotic cells. Surprisingly, we find RanGTP in sciatic nerve axoplasm, distant from neuronal cell bodies and nuclei, and in association with dynein and importin-alpha. Following injury, localized translation of RanBP1 stimulates RanGTP dissociation from importins and subsequent hydrolysis, thereby allowing binding of newly synthesized importin-beta to importin-alpha and dynein. Perturbation of RanGTP hydrolysis or RanBP1 blockade at axonal injury sites reduces the neuronal conditioning lesion response. Thus, neurons employ localized mechanisms of Ran regulation to control retrograde injury signaling in peripheral nerve. 相似文献
184.
Moushree Pal Roy Deepika Mazumdar Subhabrata Dutta Shyama Prasad Saha Shilpi Ghosh 《PloS one》2016,11(1)
The phytase gene appAS was isolated from Shigella sp. CD2 genomic library. The 3.8 kb DNA fragment contained 1299 bp open reading frame encoding 432 amino acid protein (AppAS) with 22 amino acid signal peptide at N-terminal and three sites of N-glycosylation. AppAS contained the active site RHGXRXP and HDTN sequence motifs, which are conserved among histidine acid phosphatases. It showed maximum identity with phytase AppA of Escherichia coli and Citrobacter braakii. The appAS was expressed in Pichia pastoris and E. coli to produce recombinant phytase rAppAP and rAppAE, respectively. Purified glycosylated rAppAP and nonglycosylated rAppAE had specific activity of 967 and 2982 U mg-1, respectively. Both had pH optima of 5.5 and temperature optima of 60°C. Compared with rAppAE, rAppAP was 13 and 17% less active at pH 3.5 and 7.5 and 11 and 18% less active at temperature 37 and 50°C, respectively; however, it was more active at higher incubation temperatures. Thermotolerance of rAppAP was 33% greater at 60°C and 24% greater at 70°C, when compared with rAppAE. Both the recombinant enzymes showed high specificity to phytate and resistance to trypsin. To our knowledge, this is the first report on cloning and expression of phytase from Shigella sp. 相似文献
185.
BA Deepika Jaiganesh Ramamurthy Nadathur Duraisamy Jayakumar S Rajesh Kumar 《Bioinformation》2021,17(12):1091
Ocimum sanctum (Tulsi) has various properties like anti bacterial, anti inflammatory, anti oxidant for curing diseases. It is a plant with known medicinal value in Indian system of medicine. Therefore, it is of interest to evaluate the effectiveness of Ocimum sanctum with Chlorhexidine (CHX) which is a standard material for the treatment of gingivitis. We used 30 gingivitis subjects divided into 2 groups. Group I used Tulsi gel (n= 15) and Group II used CHX gel (n = 15) for treatment. Tulsi and CHX gel use was advised for 1 month. The Clinical parameters assessed were gingival Index (GI), plaque Index (PI), probing depth (PD) and clinical attachment loss (CAL) assessed at a time interval of 30 days. Statistical analysis was completed using the SPSS software 23.0. Data showed that GI and PD for Tulsi and CHX in pre and post groups are not significant with p > 0.05. Moreover, PI is not significant with p>0.05 among pre Tulsi, pre CHX and post CHX. However, data is significant with p<0.05 for Tulsi group. CAL is significant with p<0.05 among pre/post Tulsi groups. However, this is not significant with p>0.05 among pre/post CHX groups. Data shows that 2% of Tulsi is effective in reducing gingival bleeding and inflammation. Thus, clinical data shows that Tulsi gel is promising for the treatment of gingivitis. 相似文献
186.
G. Deepika R.J. Green R.A. Frazier D. Charalampopoulos 《Journal of applied microbiology》2009,107(4):1230-1240
Aims: To investigate the changes in the surface properties of Lactobacillus rhamnosus GG during growth, and relate them with the ability of the Lactobacillus cells to adhere to Caco-2 cells.
Methods and Results: Lactobacillus rhamnosus GG was grown in complex medium, and cell samples taken at four time points and freeze dried. Untreated and trypsin treated freeze dried samples were analysed for their composition using SDS-PAGE analysis and Fourier transform infrared spectroscopy (FTIR), hydrophobicity and zeta potential, and for their ability to adhere to Caco-2 cells. The results suggested that in the case of early exponential phase samples (4 and 8 h), the net surface properties, i.e. hydrophobicity and charge, were determined to a large extent by anionic hydrophilic components, whereas in the case of stationary phase samples (13 and 26 h), hydrophobic proteins seemed to play the biggest role. Considerable differences were also observed between the ability of the different samples to adhere to Caco-2 cells; maximum adhesion was observed for the early stationary phase sample (13 h). The results suggested that the adhesion to Caco-2 cells was influenced by both proteins and non-proteinaceous compounds present on the surface of the Lactobacillus cells.
Conclusion: The surface properties of Lact. rhamnosus GG changed during growth, which in return affected the ability of the Lactobacillus cells to adhere to Caco-2 cells.
Significance and Impact of the Study: The levels of adhesion of Lactobacillus cells to Caco-2 cells were influenced by the growth time and reflected changes on the bacterial surface. This study provides critical information on the physicochemical factors that influence bacterial adhesion to intestinal cells. 相似文献
Methods and Results: Lactobacillus rhamnosus GG was grown in complex medium, and cell samples taken at four time points and freeze dried. Untreated and trypsin treated freeze dried samples were analysed for their composition using SDS-PAGE analysis and Fourier transform infrared spectroscopy (FTIR), hydrophobicity and zeta potential, and for their ability to adhere to Caco-2 cells. The results suggested that in the case of early exponential phase samples (4 and 8 h), the net surface properties, i.e. hydrophobicity and charge, were determined to a large extent by anionic hydrophilic components, whereas in the case of stationary phase samples (13 and 26 h), hydrophobic proteins seemed to play the biggest role. Considerable differences were also observed between the ability of the different samples to adhere to Caco-2 cells; maximum adhesion was observed for the early stationary phase sample (13 h). The results suggested that the adhesion to Caco-2 cells was influenced by both proteins and non-proteinaceous compounds present on the surface of the Lactobacillus cells.
Conclusion: The surface properties of Lact. rhamnosus GG changed during growth, which in return affected the ability of the Lactobacillus cells to adhere to Caco-2 cells.
Significance and Impact of the Study: The levels of adhesion of Lactobacillus cells to Caco-2 cells were influenced by the growth time and reflected changes on the bacterial surface. This study provides critical information on the physicochemical factors that influence bacterial adhesion to intestinal cells. 相似文献
187.
188.
Zona pellucida glycoprotein-3 (ZP3) has been postulated as the primary sperm receptor in various mammalian species including bonnet monkey (Macaca radiata). However, information on the domain responsible for its binding to spermatozoa is inadequate. In the present study, bonnet monkey ZP3 (bmZP3), corresponding to amino acid (aa) residues 223-348 [bmZP3(223-348)] has been cloned and expressed using baculovirus expression system. SDS-PAGE and Western blot analysis of the purified renatured recombinant protein revealed it as a closely spaced doublet of approximately 25 kDa. Lectin-binding studies documented the presence of both O- as well as N-linked glycans. The biotinylated r-bmZP3(223-348) binds to the acrosomal region of the capacitated spermatozoa but fails to bind to the acrosome-reacted spermatozoa as investigated by immunofluorescence studies. In ELISA, nonbiotinylated r-bmZP3(223-348) and baculovirus expressed r-bmZP3, devoid of signal sequence and transmembrane-like domain [r-bmZP3(23-348)] competitively inhibit its binding to the capacitated spermatozoa. Interestingly, binding of biotinylated r-bmZP3(23-348) to the capacitated sperm is also inhibited by nonbiotinylated r-bmZP3(223-348). In contrast to r-bmZP3(23-348), r-bmZP3(223-348) failed to induce acrosomal exocytosis in the capacitated sperm. Interestingly, it competitively inhibits the acrosomal exocytosis induced by r-bmZP3(23-348). These studies, for the first time, identify a domain of ZP3 capable of binding to capacitated spermatozoa and inhibiting ZP3-mediated induction of acrosomal exocytosis furthering our understanding of mammalian fertilization. 相似文献
189.
Lockridge JL Chen X Zhou Y Rajesh D Roenneburg DA Hegde S Gerdts S Cheng TY Anderson RJ Painter GF Moody DB Burlingham WJ Gumperz JE 《PloS one》2011,6(6):e21701
CD1 molecules are glycoproteins that present lipids and glycolipids for recognition by T cells. CD1-dependent immune activation has been implicated in a wide range of immune responses, however, our understanding of the role of this pathway in human disease remains limited because of species differences between humans and other mammals: whereas humans express five different CD1 gene products (CD1a, CD1b, CD1c, CD1d, and CD1e), muroid rodents express only one CD1 isoform (CD1d). Here we report that immune deficient mice engrafted with human fetal thymus, liver, and CD34(+) hematopoietic stem cells develop a functional human CD1 compartment. CD1a, b, c, and d isoforms were highly expressed by human thymocytes, and CD1a(+) cells with a dendritic morphology were present in the thymic medulla. CD1(+) cells were also detected in spleen, liver, and lungs. APCs from spleen and liver were capable of presenting bacterial glycolipids to human CD1-restricted T cells. ELISpot analyses of splenocytes demonstrated the presence of CD1-reactive IFN-γ producing cells. CD1d tetramer staining directly identified human iNKT cells in spleen and liver samples from engrafted mice, and injection of the glycolipid antigen α-GalCer resulted in rapid elevation of human IFN-γ and IL-4 levels in the blood indicating that the human iNKT cells are biologically active in vivo. Together, these results demonstrate that the human CD1 system is present and functionally competent in this humanized mouse model. Thus, this system provides a new opportunity to study the role of CD1-related immune activation in infections to human-specific pathogens. 相似文献