首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   5篇
  国内免费   1篇
  2023年   1篇
  2022年   7篇
  2021年   5篇
  2020年   6篇
  2019年   11篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   10篇
  2012年   10篇
  2011年   14篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   8篇
  2003年   5篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1993年   1篇
排序方式: 共有126条查询结果,搜索用时 234 毫秒
51.
52.
53.
54.
The amino-acid sequences of soluble, globular proteins must have hydrophobic residues to form a stable core, but excess sequence hydrophobicity can lead to loss of native state conformational specificity and aggregation. Previous studies of polar-to-hydrophobic mutations in the β-sheet of the Arc repressor dimer showed that a single substitution at position 11 (N11L) leads to population of an alternate dimeric fold in which the β-sheet is replaced by helix. Two additional hydrophobic mutations at positions 9 and 13 (Q9V and R13V) lead to population of a differently folded octamer along with both dimeric folds. Here we conduct a comprehensive study of the sequence determinants of this progressive loss of fold specificity. We find that the alternate dimer-fold specifically results from the N11L substitution and is not promoted by other hydrophobic substitutions in the β-sheet. We also find that three highly hydrophobic substitutions at positions 9, 11, and 13 are necessary and sufficient for oligomer formation, but the oligomer size depends on the identity of the hydrophobic residue in question. The hydrophobic substitutions increase thermal stability, illustrating how increased hydrophobicity can increase folding stability even as it degrades conformational specificity. The oligomeric variants are predicted to be aggregation-prone but may be hindered from doing so by proline residues that flank the β-sheet region. Loss of conformational specificity due to increased hydrophobicity can manifest itself at any level of structure, depending upon the specific mutations and the context in which they occur.  相似文献   
55.
56.
57.
Transport protein particle (TRAPP; also known as trafficking protein particle), a multimeric guanine nucleotide-exchange factor for the yeast GTPase Ypt1 and its mammalian homologue, RAB1, regulates multiple membrane trafficking pathways. TRAPP complexes exist in three forms, each of which activates Ypt1 or RAB1 through a common core of subunits and regulates complex localization through distinct subunits. Whereas TRAPPI and TRAPPII tether coated vesicles during endoplasmic reticulum to Golgi and intra-Golgi traffic, respectively, TRAPPIII has recently been shown to be required for autophagy. These advances illustrate how the TRAPP complexes link Ypt1 and RAB1 activation to distinct membrane-tethering events.  相似文献   
58.
A menace of antimicrobial resistance with growing difficulties in eradicating clinical pathogens owing to the biofilm has prompted us to take up a facile aqueous-phase approach for the synthesis of silver nanowires (SNWs) by using ethylene glycol as a reducing agent and polyvinylpyrrolidone (PVP) as a capping agent. This synthesis is a reflux reaction seedless process. The obtained SNWs were about 200–250 nm in diameter and up to 3–4 μm in length. The SNWs were characterized by field emission scanning electron microscopy, transmission electron microscopy, UV–Vis spectroscopy, and X-Ray powder diffraction, and the chemical composition of the sample was examined by energy dispersive X-ray spectrum. The SNWs did not show an antibacterial activity against test organisms, Bacillus subtilis NCIM 2063 and Escherichia coli NCIM 2931; however, it showed a promising property of a quorum sensing-mediated inhibition of biofilm in Pseudomonas aeruginosa NCIM 2948 and violacein synthesis in Chromobacterium violaceum ATCC 12472, which is hitherto unattempted, by polyol approach.  相似文献   
59.
Abstract

The emergence of drug resistance in Streptococcus pneumoniae (Spn) is a global health threat and necessitates discovery of novel therapeutics. The serine acetyltransferase (also known as CysE) is an enzyme of cysteine biosynthesis pathway and is reported to be essential for the survival of several pathogenic bacteria. Therefore, it appears to be a very attractive target for structure–function understanding and inhibitor design. This study describes the molecular cloning of cysE from Spn in the pET21c vector and efforts carried out for expression and purification of active recombinant CysE. Significant expression of recombinant Spn cysE could be achieved in codon optimized BL21(DE3)-RIL strain as opposed to conventional BL21(DE3) strain. Analysis of codon adaptation index (CAI) with levels of eukaryotic genes and prokaryotic cysEs expressed in heterologous E. coli host suggests that codon optimized E. coli BL21(DE3)-RIL may be a better host for expressing genes with low CAI. Here, an efficient protocol has been developed for recovery of recombinant Spn CysE in soluble and biologically active form by the usage of nonionic detergent Triton X-100 at a concentration as low as 1%. Altogether, this study reports a simple strategy for producing functionally active Spn CysE in E. coli.  相似文献   
60.
During our efforts to develop new antifungal agents, a number of hybrid molecules containing furanones and fluconazole pharmacophores were designed and synthesized. The new chemical entities thus synthesized were tested for their potential as antifungal agents against various fungal strains and it was observed that the compounds with general structure 7 were potent inhibitors of Candida albicans ATCC 24433, Candida glabrata ATCC 90030, Candida tropicalis ATCC 750 and Candida neoformans ATCC 34664 while the fluconazole analogues 12 exhibited antifungal activity against Candida albicans ATCC 24433 and Candida glabrata ATCC 90030. The structure-activity relationship for these compounds is discussed. The synthetic strategies used in the present work have potential to prepare a large number of compounds for further refinement of structures to obtain molecules suitable for development as antifungal drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号