首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   5篇
  国内免费   1篇
  126篇
  2023年   1篇
  2022年   7篇
  2021年   5篇
  2020年   6篇
  2019年   11篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   10篇
  2012年   10篇
  2011年   14篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   8篇
  2003年   5篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1993年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
31.

Background

The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.

Methods

Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.

Results

Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.

Conclusions

Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.  相似文献   
32.
A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.  相似文献   
33.
Membrane proteins, particularly G-protein coupled receptors (GPCRs), are notoriously difficult to express. Using commercial E. coli cell-free systems with the detergent Brij-35, we could rapidly produce milligram quantities of 13 unique GPCRs. Immunoaffinity purification yielded receptors at >90% purity. Secondary structure analysis using circular dichroism indicated that the purified receptors were properly folded. Microscale thermophoresis, a novel label-free and surface-free detection technique that uses thermal gradients, showed that these receptors bound their ligands. The secondary structure and ligand-binding results from cell-free produced proteins were comparable to those expressed and purified from HEK293 cells. Our study demonstrates that cell-free protein production using commercially available kits and optimal detergents is a robust technology that can be used to produce sufficient GPCRs for biochemical, structural, and functional analyses. This robust and simple method may further stimulate others to study the structure and function of membrane proteins.  相似文献   
34.
The present study investigated the protective effect of curcumin and mitochondrial‐targeted curcumin (MTC) in rotenone‐induced cerebellar toxicity in mice. Treatment of rotenone in mice significantly shortened the stride length for both forelimb and hind‐limb and increased fore‐paws and hind‐limb base width. Co‐treatment of curcumin and MTC with rotenone improved the walking pattern. A significant increase in lipid peroxidation, nitric oxide and decreased activity of AChE, reduced glutathione, superoxide dismutase and catalase were observed in rotenone‐treated mice while co‐treatment of curcumin and MTC with rotenone significantly increased AChE activity and protected against rotenone‐induced oxidative damage. Rotenone exposed mice showed irregular, damaged Purkinje cells and perineuronal vacuolation while co‐treatment of curcumin and MTC with rotenone protected against rotenone‐induced cellular damage in these cells. The result exhibits that both curcumin and MTC showed protective effects against rotenone‐induced cerebellar toxicity in mice and MTC is more effective than curcumin.  相似文献   
35.
Continuous increase in global human population and depletion of natural resources of energy posing threat to environment needs, sustainable supply of food and energy. The most ecofriendly approach ‘green technology’ has been exploited for biofertilizer preparation. Cyanobacteria are the most successful and sustained prokaryotic organism during the course of evolution. They are considered as one of the primitive life forms found on our planet. Cyanobacteria are emerging candidates for efficiently conversion of radiant energy into chemical energy. This biological system produces oxygen as a by-product. Cyanobacterial biomass can also be used for the large scale production of food, energy, biofertilizers, secondary metabolites, cosmetics and medicines. Therefore, cyanobacteria are used in ecofriendly sustainable agricultural practice for production of biomass of very high value and decreasing the level of CO2. This review article describes the methods of mass production of cyanobacterial biofertilizers and their applications in agriculture and industrial level.  相似文献   
36.
This work reports the synthesis of a complex of a carboplatin analog having tethered adamantane that is encapsulated in the hydrophobic cavity of β-cyclodextrin (βCD) and its cytotoxic activity towards human neuroblastoma cells (SK-N-SH). We found that this inclusion complex of βCD adamantane carboplatin analog exhibited higher cytotoxicity towards SK-N-SH cells than carboplatin itself, and the inclusion complex exhibited a higher binding to plasmid pBR322 deoxyribonucleic acid (DNA) than carboplatin. Confocal fluorescence images of SK-N-SH cells treated with βCD having an attached fluorescein isothiocyanate (FITC)-tag exhibited fluorescence in the vicinity of the nuclei of the neuroblastoma cells. Direct measurements of the platinum content in SK-N-SH cells using inductively coupled plasma mass spectrometry (ICP-MS) indicated that the uptake rate of carboplatin was about 4 times higher than βCD adamantane carboplatin analog inclusion complex. When compared to carboplatin, we believe that the higher cytotoxicity of inclusion complex towards SK-N-SH cells is due to its higher DNA binding ability as compared to carboplatin, and more efficient delivery to the nucleus of the cell. This work suggests that the advantage of deliberate noncovalent modification with βCD through host-guest chemistry may also be broadly applicable to other anticancer agents as well.  相似文献   
37.
The multivesicular body (MVB) is an endosomal intermediate containing intralumenal vesicles destined for membrane protein degradation in the lysosome. In Saccharomyces cerevisiae, the MVB pathway is composed of 17 evolutionarily conserved ESCRT (endosomal sorting complex required for transport) genes grouped by their vacuole protein sorting Class E mutant phenotypes. Only one integral membrane protein, the endosomal Na+ (K+)/H+ exchanger Nhx1/Vps44, has been assigned to this class, but its role in the MVB pathway has not been directly tested. Herein, we first evaluated the link between Nhx1 and the ESCRT proteins and then used an unbiased phenomics approach to probe the cellular role of Nhx1. Select ESCRT mutants (vps36Δ, vps20Δ, snf7Δ, and bro1Δ) with defects in cargo packaging and intralumenal vesicle formation shared multiple growth phenotypes with nhx1Δ. However, analysis of cellular trafficking and ultrastructural examination by electron microscopy revealed that nhx1Δ cells retain the ability to sort cargo into intralumenal vesicles. In addition, we excluded a role for Nhx1 in Snf7/Bro1-mediated cargo deubiquitylation and Rim101 response to pH stress. Genetic epistasis experiments provided evidence that NHX1 and ESCRT genes function in parallel. A genome-wide screen for single gene deletion mutants that phenocopy nhx1Δ yielded a limited gene set enriched for endosome fusion function, including Rab signaling and actin cytoskeleton reorganization. In light of these findings and the absence of the so-called Class E compartment in nhx1Δ, we eliminated a requirement for Nhx1 in MVB formation and suggest an alternative post-ESCRT role in endosomal membrane fusion.  相似文献   
38.
N-Cyclohexyl-3-methoxyquinoxalin-2-carboxamide (QCM-13), a novel 5-HT3 antagonist identified from a series of compounds with higher pA2 (7.6) and good log P (2.91) value was screened in rodent models of depression such as forced swim test (FST), tail suspension test (TST), interaction studies with standard anti-depressants and confirmatory studies such as reversal of parthenolide induced depression and reserpine induced hypothermia. In FST (2 and 4 mg/kg) and TST (2 and 4 mg/kg), QCM-13 significantly reduced the duration of immobility in mice without affecting the base line locomotion. QCM-13 (2 and 4 mg/kg) was also found to have significant interaction with standard anti-depressants (fluoxetine and bupropion in FST and TST respectively). Further, reversal of parthenolide induced depression in mice and reserpine induced hypothermia in rat models indicate the serotonergic influence of QCM-13 for anti-depressant potential.  相似文献   
39.
40.
To investigate the structure-function relationship of plant cyclic nucleotide-gated ion channels (CNGCs), we identified a total of 29 mutant alleles of the chimeric AtCNGC11/12 gene that induces multiple defense responses in the Arabidopsis (Arabidopsis thaliana) mutant, constitutive expresser of PR genes22 (cpr22). Based on computational modeling, two new alleles, S100 (AtCNGC11/12:G459R) and S137 (AtCNGC11/12:R381H), were identified as counterparts of human CNGA3 (a human CNGC) mutants. Both mutants lost all cpr22-mediated phenotypes. Transient expression in Nicotiana benthamiana as well as functional complementation in yeast (Saccharomyces cerevisiae) showed that both AtCNGC11/12:G459R and AtCNGC11/12:R381H have alterations in their channel function. Site-directed mutagenesis coupled with fast-protein liquid chromatography using recombinantly expressed C-terminal peptides indicated that both mutations significantly influence subunit stoichiometry to form multimeric channels. This observation was confirmed by bimolecular fluorescence complementation in planta. Taken together, we have identified two residues that are likely important for subunit interaction for plant CNGCs and likely for animal CNGCs as well.Cyclic nucleotide-gated ion channels (CNGCs) were first discovered in retinal photoreceptors and olfactory sensory neurons (Zagotta and Siegelbaum, 1996; Kaupp and Seifert, 2002). CNGCs play crucial roles for the signal transduction in these neurons that are excited by photons and odorants, respectively. In mammalian genomes, six CNGC genes have been found and named CNGA1 to CNGA4, CNGB1, and CNGB3 (Kaupp and Seifert, 2002). It has been reported that in mammalian cells, CNGCs function as heterotetramers that are composed of A and B subunits with cell-specific stoichiometry (Kaupp and Seifert, 2002; Cukkemane et al., 2011). For example, CNGCs in rod photoreceptors are composed of three A1 subunits and one B1a subunit, whereas in cone photoreceptors, they are believed to be composed of two A3 and two B3 subunits (Zhong et al., 2002; Peng et al., 2004). The structure of each subunit is similar to that of the voltage-gated K+-selective ion channel (Shaker) proteins, including a cytoplasmic N terminus, six membrane-spanning regions (S1–S6), a pore domain located between S5 and S6, and a cytoplasmic C terminus (Zagotta and Siegelbaum, 1996). However, CNGCs are only weakly voltage dependent and are opened by the direct binding of cyclic nucleotides (cAMP and cGMP), which are universally important secondary messengers that control diverse cellular responses (Fesenko et al., 1985). The cytoplasmic C terminus contains a cyclic nucleotide-binding domain (CNBD) and a C-linker region that connects the CNBD to the S6 domain. CNGC activity is also regulated by feedback inhibitory mechanisms involving the Ca2+ sensor protein, calmodulin (CaM). CaM-binding sites in animal CNGCs have been found in various regions of both the C- and N-terminal domains (Ungerer et al., 2011). It has been reported that the subunit composition has significant influence on the mode of CaM-mediated regulation (Kramer and Siegelbaum, 1992; Bradley et al., 2004; Song et al., 2008).On the other hand, plant CNGCs have only been investigated much more recently. The first plant CNGC, HvCBT1, was identified as a CaM-binding transporter protein in barley (Hordeum vulgare; Schuurink et al., 1998). Subsequently, several CNGCs were identified from Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum; Arazi et al., 1999; Köhler and Neuhaus, 1998; Köhler et al., 1999). Interestingly, the Arabidopsis genome sequencing project identified a large family comprising 20 members (AtCNGC1–AtCNGC20), indicating a significant expansion of Arabidopsis CNGCs that suggests a higher level of diversity and functional importance in plants (Mäser et al., 2001). To date, possible biological functions of Arabidopsis CNGCs in development, ion homeostasis, thermal sensing, as well as pathogen resistance have been reported (Kaplan et al., 2007; Chin et al., 2009; Dietrich et al., 2010; Moeder et al., 2011; Finka et al., 2012). With respect to structure, plant CNGCs are believed to have a similar architecture to their animal counterparts (Chin et al., 2009). However, only a handful of studies on the structure-function analysis of plant CNGCs have been published so far, and this field is still very much in its infancy (Hua et al., 2003; Bridges et al., 2005; Kaplan et al., 2007; Baxter et al., 2008; Chin et al., 2010).Previously, we have reported two functionally important residues in plant CNGCs (Baxter et al., 2008; Chin et al., 2010). These residues were discovered using a suppressor screen of the rare gain-of-function Arabidopsis mutant constitutive expresser of PR genes22 (cpr22; Yoshioka et al., 2006). The cpr22 mutant, which has a deletion between AtCNGC11 and AtCNGC12 resulting in a novel but functional chimeric CNGC (AtCNGC11/12), exhibits multiple resistance responses without pathogen infection in the hemizygous state and conditional lethality in the homozygous state (Yoshioka et al., 2001, 2006; Moeder et al., 2011). It has been reported that the cpr22 phenotype is attributable to the expression of AtCNGC11/12 and its channel activity (Yoshioka et al., 2006; Baxter et al., 2008), thereby making the suppressor screen an invaluable tool for identifying intragenic mutants to further elucidate the structure-function relationship of plant CNGCs (Baxter et al., 2008; Chin et al., 2010).In this study, we describe a total of 29 mutant alleles of AtCNGC11/12, including the three previously published alleles (Baxter et al., 2008; Chin at al., 2010), and compare their predicted three-dimensional structural positions with equivalent mutations of a human CNGC, CNGA3. In this analysis, two AtCNGC11/12 mutations emerged as counterparts of human mutations (Wissinger et al., 2001). Both the AtCNGC11/12 as well as the human CNGA3 mutations were computationally predicted to affect intersubunit interactions. This prediction was experimentally validated by size-exclusion chromatography (FPLC) as well as bimolecular fluorescence complementation (BiFC) in combination with site-direct mutagenesis using recombinant C-terminal peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号