首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   900篇
  免费   85篇
  国内免费   1篇
  2023年   8篇
  2022年   9篇
  2021年   18篇
  2020年   16篇
  2019年   25篇
  2018年   26篇
  2017年   22篇
  2016年   23篇
  2015年   40篇
  2014年   56篇
  2013年   69篇
  2012年   65篇
  2011年   72篇
  2010年   38篇
  2009年   27篇
  2008年   45篇
  2007年   53篇
  2006年   36篇
  2005年   21篇
  2004年   29篇
  2003年   13篇
  2002年   20篇
  2001年   12篇
  2000年   13篇
  1999年   10篇
  1998年   8篇
  1997年   5篇
  1992年   8篇
  1990年   8篇
  1989年   7篇
  1988年   8篇
  1987年   10篇
  1985年   6篇
  1984年   10篇
  1983年   8篇
  1982年   10篇
  1981年   6篇
  1980年   6篇
  1979年   12篇
  1978年   4篇
  1976年   8篇
  1975年   9篇
  1974年   6篇
  1973年   12篇
  1972年   9篇
  1971年   5篇
  1970年   8篇
  1969年   6篇
  1968年   5篇
  1965年   4篇
排序方式: 共有986条查询结果,搜索用时 15 毫秒
21.
Responses of mammalian metaphase chromosomes to endonuclease digestion   总被引:4,自引:0,他引:4  
Sahasrabuddhe  C. G.  Pathak  S.  Hsu  T. C. 《Chromosoma》1978,69(3):331-338
Digestion of fixed metaphase chromosomes by endonucleases (micrococcal nuclease and DNase II) under optimal digestion conditions followed by Giemsa staining produces sharp banding patterns identical to G-bands. In 3H-thymidine labeled, synchronized metaphase cells of the chinese hamster (CHO line), the band induction is accompanied by the removal of DNA. The single strand specific nuclease S1 and DNase I do not produce such banding patterns.  相似文献   
22.
23.
T. C. Hsu  S. Pathak 《Chromosoma》1976,58(3):269-273
In two rodent species, the Chinese hamster and the montane vole (Microtus montanus), the rate of sister chromatid exchange was lower in constitutive heterochromatin than in euchromatin.  相似文献   
24.
25.

The present study examined the anti-biofilm efficacy of two short-chain antimicrobial peptides (AMPs), namely, indolicidin and cecropin A (1-7)-melittin (CAMA) against biofilm-forming multidrug-resistant enteroaggregative Escherichia coli (MDR-EAEC) isolates. The typical EAEC isolates re-validated by PCR and confirmed using HEp-2 cell adherence assay was subjected to antibiotic susceptibility testing to confirm its MDR status. The biofilm-forming ability of MDR-EAEC isolates was assessed by Congo red binding, microtitre plate assays and hydrophobicity index; broth microdilution technique was employed to determine minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentrations (MBECs). The obtained MIC and MBEC values for both AMPs were evaluated alone and in combination against MDR-EAEC biofilms using crystal violet (CV) staining and confocal microscopy-based live/dead cell quantification methods. All the three MDR-EAEC strains revealed weak to strong biofilm-forming ability and were found to be electron-donating and weakly electron-accepting (hydrophobicity index). Also, highly significant (P < 0.001) time-dependent hydrodynamic growth of the three MDR-EAEC strains was observed at 48 h of incubation in Dulbecco’s modified Eagle’s medium (DMEM) containing 0.45% D-glucose. AMPs and their combination were able to inhibit the initial biofilm formation at 24 h and 48 h as evidenced by CV staining and confocal quantification. Further, the application of AMPs (individually and combination) against the preformed MDR-EAEC biofilms resulted in highly significant eradication (P < 0.001) at 24 h post treatment. However, significant differences were not observed between AMP treatments (individually or in combination). The AMPs seem to be an effective candidates for further investigations such as safety, stability and appropriate biofilm-forming MDR-EAEC animal models.

  相似文献   
26.

The milieu of male germline stem cells (mGSCs) is characterized as a low-oxygen (O2) environment, whereas, their in-vitro expansion is typically performed under normoxia (20–21% O2). The comparative information about the effects of low and normal O2 levels on the growth and differentiation of caprine mGSCs (cmGSCs) is lacking. Thus, we aimed to investigate the functional and multilineage differentiation characteristics of enriched cmGSCs, when grown under hypoxia and normoxia. After enrichment of cmGSCs through multiple methods (differential platting and Percoll-density gradient centrifugation), the growth characteristics of cells [population-doubling time (PDT), viability, proliferation, and senescence], and expression of key-markers of adhesion (β-integrin and E-Cadherin) and stemness (OCT-4, THY-1 and UCHL-1) were evaluated under hypoxia (5% O2) and normoxia (21% O2). Furthermore, the extent of multilineage differentiation (neurogenic, adipogenic, and chondrogenic differentiation) under different culture conditions was assessed. The survival, viability, and proliferation were significantly (p?<?0.05) improved, thus, yielding a significantly (p?<?0.05) higher number of viable cells with larger colonies under hypoxia. Furthermore, the expression of stemness and adhesion markers were distinctly upregulated under lowered O2 conditions. Conversely, the differentiated regions and expression of differentiation-specific genes [C/EBPα (adipogenic), nestin and β-tubulin (neurogenic), and COL2A1 (chondrogenic)] were significantly (p?<?0.05) reduced under hypoxia. Overall, the results demonstrate that culturing cmGSCs under hypoxia augments the growth characteristics and stemness but not the multilineage differentiation of cmGSCs, as compared with normoxia. These data are important to develop robust methodologies for ex-vivo expansion and lineage-committed differentiation of cmGSCs for clinical applications.

  相似文献   
27.
Molecular and Cellular Biochemistry - Oxidative stress has been known to be the underlying cause in many instances of cancer development. The new aspect of cancer genesis that has caught the...  相似文献   
28.
Alternaria solani, a plant pathogenic fungus causes significant economical losses of potato crop. The disease is controlled primarily through some traditional methods and most commonly via the application of chemical fungicides. Fungicides treatment is not protected as chemicals pollute environment, effect health vulnerability in humans and when these harmful chemicals enter into the food chain become hazardous to all living entities. Recent efforts have focused on developing environmentally safe, long-lasting, and effective biocontrol methods for the management of plant diseases. Present research focus on screening of crude and partially purified leaf extract of Thevetia peruviana for the presence of antifungal efficacy against Alternarai solani. It was observed that 100% alcoholic crude and alcoholic fraction of partially purified extract showed maximum inhibitory activity which is due to the presence of different secondary metabolites, revealed by phytochemical screening. Active column fraction (possess best antifungal activity against Alternaria solani) was subjected to Gas Chromatography-Mass Spectrometry (GS-MS) analysis. On the basis of peaks matching of GC-MS chromatogram with available data base showed the presence of benzoic acid and oxo-benzoate in active fraction of Thevetia peruviana leaf extract which is already known chemical among the phytochemicals described for antimicrobial activity. Further research on development of herbal formulation from the same would be very helpful environment friendly approach to manage concern crop disease.  相似文献   
29.
Traffic from the endoplasmic reticulum (ER) to the Golgi complex is initiated when the activated form of the GTPase Sar1p recruits the Sec23p-Sec24p complex to ER membranes. The Sec23p-Sec24p complex, which forms the inner shell of the COPII coat, sorts cargo into ER-derived vesicles. The coat inner shell recruits the Sec13p-Sec31p complex, leading to coat polymerization and vesicle budding. Recent studies revealed that the Sec23p subunit sequentially interacts with three different binding partners to direct a COPII vesicle to the Golgi. One of these binding partners is the serine/threonine kinase Hrr25p. Hrr25p phosphorylates the COPII coat, driving the membrane-bound pool into the cytosol. The phosphorylated coat cannot rebind to the ER to initiate a new round of vesicle budding unless it is dephosphorylated. Here we screen all known protein phosphatases in yeast to identify one whose loss of function alters the cellular distribution of COPII coat subunits. This screen identifies the PP2A-like phosphatase Sit4p as a regulator of COPII coat dephosphorylation. Hyperphosphorylated coat subunits accumulate in the sit4Δ mutant in vivo. In vitro, Sit4p dephosphorylates COPII coat subunits. Consistent with a role in coat recycling, Sit4p and its mammalian orthologue, PP6, regulate traffic from the ER to the Golgi complex.  相似文献   
30.
Twenty one isolates of Fusarium oxysporum f. sp. psidii (Fop), causing a vascular wilt in guava (Psidium guajava L.), were collected from different agro-ecological regions of India. The pathogenicity test was performed in guava seedlings, where the Fop isolates were found to be highly pathogenic. All 21 isolates were confirmed as F. oxysporum f. sp. psidii by a newly developed, species-specific primer against the conserved regions of 28S rDNA and the intergenic spacer region. RAPD and PCR-RFLP were used for genotyping the isolates to determine their genetic relationships. Fifteen RAPD primers were tested, of which five primers produced prominent, polymorphic, and reproducible bands. RAPD yielded an average of 6.5 polymorphic bands per primer, with the amplified DNA fragments ranging from 200–2,000 bp in size. A dendrogram constructed from these data indicated a 22–74% level of homology. In RFLP analysis, two major bands (350 and 220 bp) were commonly present in all isolates of F. oxysporum. These findings provide new insight for rapid, specific, and sensitive disease diagnosis. However, genotyping could be useful in strain-level discrimination of isolates from different agro-ecological regions of India.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号