首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1280篇
  免费   83篇
  2024年   2篇
  2023年   11篇
  2022年   24篇
  2021年   50篇
  2020年   18篇
  2019年   30篇
  2018年   38篇
  2017年   28篇
  2016年   47篇
  2015年   91篇
  2014年   89篇
  2013年   116篇
  2012年   138篇
  2011年   117篇
  2010年   60篇
  2009年   49篇
  2008年   60篇
  2007年   59篇
  2006年   69篇
  2005年   64篇
  2004年   56篇
  2003年   46篇
  2002年   36篇
  2001年   8篇
  2000年   12篇
  1999年   8篇
  1998年   7篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1363条查询结果,搜索用时 78 毫秒
141.
Neurite outgrowth is essential for the communication of the nervous system. The rat Pheochromocytoma (PC12) cells are commonly used in the neuronal cell study. It is well known that exogenous stimuli such as Nerve Growth Factor (NGF) induce neurite outgrowth. In the present study it has been investigated whether or not the conditioned medium from human neuroblastoma cell line (IMR-32) and human glioblastoma cell line (U87MG) may augment neurite outgrowth in PC12 cells. PC12 were cultured with and without conditioned media of IMR-32 and U87MG. The result showed that both the conditioned media induce neurite outgrowth within 48 hr and stops further proliferation of PC12 cells. However no outgrowth was noted in PC12 cells incubated without conditioned medium. In conclusion, it is shown that both the conditioned media (IMR-32 and U87MG) have the potential to induce the neurite outgrowth in the PC12 cells.  相似文献   
142.
A bioconjugate of Pseudomonas cepacia lipase with alginate was prepared by simple adsorption. Atomic force microscope (AFM) images showed that this bioconjugate resulted from adsorption rather than entrapment of the enzyme as enzyme molecules were visible on the gel surface. The soluble bioconjugate exhibited increased enzyme activity in terms of high effectiveness factor (effectiveness factor was 3 for the immobilized preparation) and greater Vmax/Km value (Vmax/Km increased 25 times upon immobilization). This constitutes one of the less frequently observed instances of lipase activation by lid opening as a result of binding to a predominantly hydrophilic molecule. The bioconjugate was also more stable at 55 degrees C as compared to the free enzyme and could be reused for oil hydrolysis up to 4 cycles without any loss in activity. Fluorescence emission spectroscopy showed that the immobilized enzyme had undergone definite conformational changes.  相似文献   
143.

Background  

Diagnosis of tuberculous meningitis (TBM) is difficult. Rapid confirmatory diagnosis is essential to initiate required therapy. There are very few published reports about the diagnostic significance of 65 kD heat shock protein (hsp) in TBM patients, which is present in a wide range of Mycobacterium tuberculosis species and elicits a cellular and humoral immune response. In the present study we have conducted a prospective evaluation for the demonstration of 65 kD hsp antigen in cerebrospinal fluid (CSF) of TBM patients, by indirect ELISA method using monoclonal antibodies (mAb) against the 65 kD hsp antigen, for the diagnosis of TBM.  相似文献   
144.
145.
In living cells, polypeptide chains emerging from ribosomes and preexisting polypeptide chains face constant threat of misfolding and aggregation. To prevent protein aggregation and to fulfill their biological activity, generally, protein must fold into its proper three-dimensional structure throughout their lifetimes. Eukaryotic cell possesses a quality control (QC) system to contend the problem of protein misfolding and aggregation. Cells achieve this functional QC system with the help of molecular chaperones and ubiquitin-proteasome system (UPS). The well-conserved UPS regulates the stability of various proteins and maintains all essential cellular function through intracellular protein degradation. E3 ubiquitin ligase enzyme determines specificity for degradation of certain substrates via UPS. New emerging evidences have provided considerable information that various E3 ubiquitin ligases play a major role in cellular QC mechanism and principally designated as QC E3 ubiquitin ligases. Nevertheless, very little is known about how E3 ubiquitin ligase maintains QC mechanism against abnormal proteins under various stress conditions. Here in this review, we highlight and discuss the functions of various E3 ubiquitin ligases implicated in protein QC mechanism. Improving our knowledge about such processes may provide opportunities to modulate protein QC mechanism in age-of-onset diseases that are caused by protein aggregation.  相似文献   
146.
Amphotericin B (AmB) liposome formulations are very successful in the treatment of fungal infections and leishmaniasis. But higher cost limits its widespread use among people in developing countries. Therefore, we have developed a modified ethanol-injection method for the preparation of AmB liposomes. Two liposomal formulations were developed with dimyristoyl phosphatidylcholine [F-1a] and soya phosphatidylcholine [F-2a], along with egg phosphatidyl glycerol and cholesterol. AmB was dissolved in acidified dimethyl acetamide and mixed with ethanolic lipid solution and rapidly injected in 5% dextrose to prepare liposomes. Liposomes were characterized on the basis of size (~100?nm), zeta (-43.3?±?2.8 mV) and percent entrapment efficiency (>95%). The in vitro release study showed an insignificant difference (P?≥?0.05) for 24-hour release between marketed AmB liposomes (AmBisome) and F-1a and F-2a. Proliposome concentrate, used for the preparation of in situ liposomes, was physically stable for more than 3 months at experimental conditions. Similarly, AmB showed no sign of degradation in reconstituted liposomes stored at 2-8°C for more than 3 months. IC(50) value of Ambisome (0.18 μg/mL) was comparatively similar to F-1a (0.17 μg/mL) and F-2a (0.16 μg/mL) against intramacrophagic amastigotes. Under experimental conditions, a novel modified method for AmB liposomes is a great success and generates interest for development as a platform technology for many therapeutic drug products.  相似文献   
147.
Target-mediated clearance and high antigen load can hamper the efficacy and dosage of many antibodies. We show for the first time that the mouse, cynomolgus, and human cross-reactive, antagonistic anti-proprotein convertase substilisin kexin type 9 (PCSK9) antibodies J10 and the affinity-matured and humanized J16 exhibit target-mediated clearance, resulting in dose-dependent pharmacokinetic profiles. These antibodies prevent the degradation of low density lipoprotein receptor, thus lowering serum levels of LDL-cholesterol and potently reducing serum cholesterol in mice, and selectively reduce LDL-cholesterol in cynomolgus monkeys. In order to increase the pharmacokinetic and efficacy of this promising therapeutic for hypercholesterolemia, we engineered pH-sensitive binding to mouse, cynomolgus, and human PCSK9 into J16, resulting in J17. This antibody shows prolonged half-life and increased duration of cholesterol lowering in two species in vivo by binding to endogenous PCSK9 in mice and cynomolgus monkeys, respectively. The proposed mechanism of this pH-sensitive antibody is that it binds with high affinity to PCSK9 in the plasma at pH 7.4, whereas the antibody-antigen complex dissociates at the endosomal pH of 5.5-6.0 in order to escape from target-mediated degradation. Additionally, this enables the antibody to bind to another PCSK9 and therefore increase the antigen-binding cycles. Furthermore, we show that this effect is dependent on the neonatal Fc receptor, which rescues the dissociated antibody in the endosome from degradation. Engineered pH-sensitive antibodies may enable less frequent or lower dosing of antibodies hampered by target-mediated clearance and high antigen load.  相似文献   
148.
Successful recall Ab responses require recruitment of quiescent memory B cells to secondary lymphoid organs. However, the cellular dynamics of memory cells responding to local antigenic challenge at lymphoid sites distal from the initial Ag encounter are not well understood. We show in this study that memory B cells generated following s.c. immunization in one footpad generate secondary responses to soluble Ag given i.p. but not to Ag given s.c. in the contralateral footpad unless LPS is coadministered. Memory B cells do not express CD62L, and CD62L(-ve) cells cannot enter lymph nodes unless LPS-mediated inflammation is induced there. Functional TLR4 is required on the B cells, as well as on non-B cells, in the lymph node to achieve full recruitment. Furthermore, splenectomized mice fail to respond to such inflammatory s.c. challenge in contralateral footpads, unlike lymphadenectomized mice lacking the original draining lymph nodes. Splenectomized mice also fail to respond to i.p. challenge with soluble Ag. Together, these data indicate that, unlike the central memory pool of T cells, which circulates through resting lymph nodes, the majority of long-lived memory B cells are spleen resident and require inflammatory signals for mounting recall responses at distal challenge sites.  相似文献   
149.
We have demonstrated that ouabain regulates protein trafficking of the Na/K-ATPase α1 subunit and NHE3 (Na/H exchanger, isoform 3) via ouabain-activated Na/K-ATPase signaling in porcine LLC-PK1 cells. To investigate whether this mechanism is species-specific, ouabain-induced regulation of the α1 subunit and NHE3 as well as transcellular (22)Na(+) transport were compared in three renal proximal tubular cell lines (human HK-2, porcine LLC-PK1, and AAC-19 originated from LLC-PK1 in which the pig α1 was replaced by ouabain-resistant rat α1). Ouabain-induced inhibition of transcellular (22)Na(+) transport is due to an ouabain-induced redistribution of the α1 subunit and NHE3. In LLC-PK1 cells, ouabain also inhibited the endocytic recycling of internalized NHE3, but has no significant effect on recycling of endocytosed α1 subunit. These data indicated that the ouabain-induced redistribution of the α1 subunit and NHE3 is not a species-specific phenomenon, and ouabain-activated Na/K-ATPase signaling influences NHE3 regulation.  相似文献   
150.
Molecular variants of polymorphic drug metabolizing enzymes and drug transporters are attributed to differences in individual's therapeutic response and drug toxicity in different populations. We sought to determine the genotype and allele frequencies of polymorphisms for major phase II drug-metabolizing enzymes (TPMT, UGT1A1) and drug transporter (MDR1) in South Indians. Allelic variants of TPMT (*2,*3A,*3B,*3C & *8), UGT1A1 (TA)6>7 and MDR1 (2677G>T/A & 3435C>T) were evaluated in 450-608 healthy South Indian subjects. Genomic DNA was extracted by phenol-chloroform method and genotype was determined by PCR-RFLP, qRT-PCR, allele specific PCR, direct sequencing and SNaPshot techniques. The frequency distributions of TPMT, UGT1A1 and MDR1 gene polymorphisms were compared between the individual 4 South Indian populations viz., Tamilian, Kannadiga, Andhrite and Keralite. The combined frequency distribution of the South Indian populations together, was also compared with that of other major populations. The allele frequencies of TPMT*3C, UGT1A1 (TA)7, MDR1 2677T, 2677A and 3435T were 1.2, 39.8, 60.3, 3.7, and 61.6% respectively. The other variant alleles such as TPMT*2, *3A, *3B and *8 were not identified in the South Indian population. Sub-population analysis showed that the distribution of UGT1A1 (TA)6>7 and MDR1 allelic variants differed between the four ethnic groups. However, the frequencies of TPMT*3C allele were similar in the four South Indian populations. The distribution of TPMT, UGT1A1 and MDR1 gene polymorphisms of the South Indian population was significantly different from other populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号