首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23767篇
  免费   1686篇
  国内免费   31篇
  2023年   176篇
  2022年   374篇
  2021年   796篇
  2020年   460篇
  2019年   508篇
  2018年   721篇
  2017年   661篇
  2016年   892篇
  2015年   1078篇
  2014年   1326篇
  2013年   1810篇
  2012年   1951篇
  2011年   1731篇
  2010年   1012篇
  2009年   907篇
  2008年   1081篇
  2007年   1031篇
  2006年   905篇
  2005年   832篇
  2004年   701篇
  2003年   632篇
  2002年   546篇
  2001年   449篇
  2000年   427篇
  1999年   358篇
  1998年   155篇
  1997年   120篇
  1996年   133篇
  1995年   134篇
  1994年   109篇
  1993年   100篇
  1992年   262篇
  1991年   266篇
  1990年   201篇
  1989年   167篇
  1988年   208篇
  1987年   185篇
  1986年   149篇
  1985年   172篇
  1984年   142篇
  1983年   106篇
  1982年   94篇
  1981年   99篇
  1980年   86篇
  1979年   117篇
  1978年   85篇
  1977年   82篇
  1976年   64篇
  1974年   80篇
  1972年   70篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
41.
42.
Amyloid fibrillar aggregates isolated from the brains of patients with neurodegenerative diseases invariably have post‐translational modifications (PTMs). The roles that PTMs play in modulating the structures and polymorphism of amyloid aggregates, and hence their ability to catalyze the conversion of monomeric protein to their fibrillar structure is, however, poorly understood. This is particularly true in the case of tau aggregates, where specific folds of fibrillar tau have been implicated in specific tauopathies. Several PTMs, including acetylation at Lys 280, increase aggregation of tau in the brain, and increase neurodegeneration. In this study, tau‐K18 K280Q, in which the Lys 280 → Gln mutation is used to mimic acetylation at Lys 280, is shown, using HX‐MS measurements, to form fibrils with a structural core that is longer than that of tau‐K18 fibrils. Measurements of critical concentrations show that the binding affinity of monomeric tau‐K18 for its fibrillar counterpart is only marginally more than that of monomeric tau‐K18 K280Q for its fibrillar counterpart. Quantitative analysis of the kinetics of seeded aggregation, using a simple Michaelis–Menten‐like model, in which the monomer first binds and then undergoes conformational conversion to β‐strand, shows that the fibrils of tau‐K18 K280Q convert monomeric protein more slowly than do fibrils of tau‐K18. In contrast, monomeric tau‐K18 K280Q is converted faster to fibrils than is monomeric tau‐K18. Thus, the effect of Lys 280 acetylation on tau aggregate propagation in brain cells is expected to depend on the amount of acetylated tau present, and on whether the propagating seed is acetylated at Lys 280 or not.  相似文献   
43.
Eighteen barley isolates of Bipolaris sorokiniana belonging to wild and clonal type of black, mixed and white subpopulations were quantitatively assayed for their melanin content and aggressiveness with respect to production of some of the extracellular enzymes such as cellulase, pectinase, amylase and protease. Cellulase and pectinase constituted major portion of the enzymes recovered from the black, mixed and white isolates. Enzyme production and aggressiveness were relatively higher in melanin devoid or low melanin isolates. The melanin deficient isolates were also differentiated from black and mixed isolates on the basis of variation in internal transcribed spacer region of the ribosomal DNA. Higher enzyme productions positively correlated with area under disease progress curve (AUDPC) and lesion development. Melanin content was negatively correlated with extracellular enzymes and aggressiveness of the isolates. Based on melanin content, lesion size, AUDPC and extracellular enzymes, the isolates were grouped in two major clusters (I and II) with further division of cluster II into two sub-clusters (II-A and II-B). The results appears to indicate a possible role of melanin in release of extracellular enzymes and hence in evolution and selection of aggressive isolates of B. sorokiniana in barley.  相似文献   
44.
The bacterial H+-translocating NADH:quinone oxidoreductase (NDH-1) catalyzes electron transfer from NADH to quinone coupled with proton pumping across the cytoplasmic membrane. The NuoK subunit (counterpart of the mitochondrial ND4L subunit) is one of the seven hydrophobic subunits in the membrane domain and bears three transmembrane segments (TM1–3). Two glutamic residues located in the adjacent transmembrane helices of NuoK are important for the energy coupled activity of NDH-1. In particular, mutation of the highly conserved carboxyl residue (KGlu-36 in TM2) to Ala led to a complete loss of the NDH-1 activities. Mutation of the second conserved carboxyl residue (KGlu-72 in TM3) moderately reduced the activities. To clarify the contribution of NuoK to the mechanism of proton translocation, we relocated these two conserved residues. When we shifted KGlu-36 along TM2 to positions 32, 38, 39, and 40, the mutants largely retained energy transducing NDH-1 activities. According to the recent structural information, these positions are located in the vicinity of KGlu-36, present in the same helix phase, in an immediately before and after helix turn. In an earlier study, a double mutation of two arginine residues located in a short cytoplasmic loop between TM1 and TM2 (loop-1) showed a drastic effect on energy transducing activities. Therefore, the importance of this cytosolic loop of NuoK (KArg-25, KArg-26, and KAsn-27) for the energy transducing activities was extensively studied. The probable roles of subunit NuoK in the energy transducing mechanism of NDH-1 are discussed.  相似文献   
45.
Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (?113.655 kJ/mol) had better binding compared to Cmp19 (?95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.  相似文献   
46.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
47.
48.
ABSTRACT

With countless “natural” experiments triggered by the COVID-19-associated physical distancing, one key question comes from chronobiology: “When confined to homes, how does the reduced exposure to natural daylight arising from the interruption of usual outdoor activities plus lost temporal organization ordinarily provided from workplaces and schools affect the circadian timing system (the internal 24 h clock) and, consequently, health of children and adults of all ages?” Herein, we discuss some ethical and scientific facets of exploring such natural experiments by offering a hypothetical case study of circadian biology.  相似文献   
49.
Organelles such as endosomes and the Golgi apparatus play a critical role in regulating signal transmission to the nucleus. Recent experiments have shown that appropriate positioning of these organelles within the intracellular space is critical for effective signal regulation. To understand the mechanism behind this observation, we consider a reaction-diffusion model of an intracellular signaling cascade and investigate the effect on the signaling of intracellular regulation in the form of a small release of phosphorylated signaling protein, kinase, and/or phosphatase. Variational analysis is applied to characterize the most effective regions for the localization of this intracellular regulation. The results demonstrate that signals reaching the nucleus are most effectively regulated by localizing the release of phosphorylated substrate protein and kinase near the nucleus. Phosphatase release, on the other hand, is nearly equally effective throughout the intracellular space. The effectiveness of the intracellular regulation is affected strongly by the characteristics of signal propagation through the cascade. For signals that are amplified as they propagate through the cascade, reactions in the upstream levels of the cascade exhibit much larger sensitivities to regulation by release of phosphorylated substrate protein and kinase than downstream reactions. On the other hand, for signals that decay through the cascade, downstream reactions exhibit larger sensitivity than upstream reactions. For regulation by phosphatase release, all reactions within the cascade show large sensitivity for amplified signals but lose this sensitivity for decaying signals. We use the analysis to develop a simple model of endosome-mediated regulation of cell signaling. The results demonstrate that signal regulation by the modeled endosome is most effective when the endosome is positioned in the vicinity of the nucleus. The present findings may explain at least in part why endosomes in many cell types localize near the nucleus.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号