首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1919篇
  免费   118篇
  国内免费   1篇
  2023年   14篇
  2022年   26篇
  2021年   58篇
  2020年   26篇
  2019年   49篇
  2018年   57篇
  2017年   37篇
  2016年   57篇
  2015年   117篇
  2014年   122篇
  2013年   139篇
  2012年   186篇
  2011年   157篇
  2010年   83篇
  2009年   68篇
  2008年   99篇
  2007年   102篇
  2006年   100篇
  2005年   85篇
  2004年   75篇
  2003年   72篇
  2002年   52篇
  2001年   20篇
  2000年   17篇
  1999年   20篇
  1998年   9篇
  1997年   5篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   8篇
  1991年   5篇
  1990年   6篇
  1989年   8篇
  1988年   5篇
  1987年   5篇
  1986年   11篇
  1985年   11篇
  1984年   6篇
  1983年   9篇
  1981年   6篇
  1980年   7篇
  1979年   10篇
  1978年   6篇
  1977年   5篇
  1972年   5篇
  1970年   5篇
  1969年   4篇
  1965年   4篇
排序方式: 共有2038条查询结果,搜索用时 31 毫秒
941.
Cardiotonic steroids (such as ouabain) signaling through Na/K-ATPase regulate sodium reabsorption in the renal proximal tubule. We report here that reactive oxygen species are required to initiate ouabain-stimulated Na/K-ATPase·c-Src signaling. Pretreatment with the antioxidant N-acetyl-l-cysteine prevented ouabain-stimulated Na/K-ATPase·c-Src signaling, protein carbonylation, redistribution of Na/K-ATPase and sodium/proton exchanger isoform 3, and inhibition of active transepithelial 22Na+ transport. Disruption of the Na/K-ATPase·c-Src signaling complex attenuated ouabain-stimulated protein carbonylation. Ouabain-stimulated protein carbonylation is reversed after removal of ouabain, and this reversibility is largely independent of de novo protein synthesis and degradation by either the lysosome or the proteasome pathways. Furthermore, ouabain stimulated direct carbonylation of two amino acid residues in the actuator domain of the Na/K-ATPase α1 subunit. Taken together, the data indicate that carbonylation modification of the Na/K-ATPase α1 subunit is involved in a feed-forward mechanism of regulation of ouabain-mediated renal proximal tubule Na/K-ATPase signal transduction and subsequent sodium transport.  相似文献   
942.
943.
The present study was designed to investigate the hypoglycemic effect of an aqueous extract of MAC-ST/001 (a new polyherbal formulation) which was given once daily to rats at different doses. The animals were divided into diabetic and nondiabetic control groups. The duration of each experiment lasted from 1 week to 1 month, and the results were compared with that of the standard hypoglycemic drug glibenclamide (10 mg/kg), which was given once daily. In this study, biochemical and histopathological parameters were studied in streptozotacin (STZ) (single intraperitoneal injection of 55 mg/kg)-induced diabetic rats. The diabetic rats showed a significant (p?<?0.05 and p?<?0.01) decrease in their body weight and serum amylase with marked elevation in blood glucose, serum cholesterol, blood urea nitrogen, creatinine, alkaline phosphatase, and serum transaminases (AST and ALT) after 1 week till the 28th day of diabetes. Cytotoxicity of MAC-ST/001 formulation was also studied on C2C12, 3T3-L1, and HepG2 cells through MTT assay. Histological examination of the liver and pancreas of normal control, diabetic control, and drug-treated rats revealed significant results. Finally, it was concluded that administration of this MAC-ST/001 extract reversed most blood and tissue changes caused by STZ-induced diabetes in rats.  相似文献   
944.
Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved ‘9+2’ axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4) of C. reinhardtii for biophysical parameters such as swimming velocities, waveforms, beat frequencies, and swimming trajectories. These mutants are aberrant in proteins involved in the regulation of flagellar length and bring about a phenotypic increase in this length. Our results reveal that the flagellar beat frequency and swimming velocity are negatively correlated with the length of the flagella. When compared to the wild-type, any increase in the flagellar length reduces both the swimming velocities (by 26–57%) and beat frequencies (by 8–16%). We demonstrate that with no apparent aberrations/ultrastructural deformities in the mutant axonemes, it is this increased length that has a critical role to play in the motion dynamics of C. reinhardtii cells, and, provided there are no significant changes in their flagellar proteome, any increase in this length compromises the swimming velocity either by reduction of the beat frequency or by an alteration in the waveform of the flagella.  相似文献   
945.
946.
Recent experiments provided controversial observations that either parallel or non-parallel G-quadruplex exists in molecularly crowded buffers that mimic cellular environment. Here, we used laser tweezers to mechanically unfold structures in a human telomeric DNA fragment, 5′-(TTAGGG)4TTA, along three different trajectories. After the end-to-end distance of each unfolding geometry was measured, it was compared with PDB structures to identify the best-matching G-quadruplex conformation. This method is well-suited to identify biomolecular structures in complex settings not amenable to conventional approaches, such as in a solution with mixed species or at physiologically significant concentrations. With this approach, we found that parallel G-quadruplex coexists with non-parallel species (1:1 ratio) in crowded buffers with dehydrating cosolutes [40% w/v dimethyl sulfoxide (DMSO) or acetonitrile (ACN)]. In crowded solutions with steric cosolutes [40% w/v bovine serum albumin (BSA)], the parallel G-quadruplex constitutes only 10% of the population. This difference unequivocally supports the notion that dehydration promotes the formation of parallel G-quadruplexes. Compared with DNA hairpins that have decreased unfolding forces in crowded (9 pN) versus diluted (15 pN) buffers, those of G-quadruplexes remain the same (20 pN). Such a result implies that in a cellular environment, DNA G-quadruplexes, instead of hairpins, can stop DNA/RNA polymerases with stall forces often <20 pN.  相似文献   
947.
Motivated by experiments in which an applied electric field translocates polynucleotides through an α-hemolysin protein channel causing ionic current transient blockade, a hybrid simulation model is proposed to predict the conductance properties of the open channel. Time scales corresponding to ion permeation processes are reached using the Poisson–Nernst–Planck (PNP) electro-diffusion model in which both solvent and local ion concentrations are represented as a continuum. The diffusion coefficients of the ions (K+ and Cl?) input in the PNP model are, however, calculated from all-atom molecular dynamics (MD). In the MD simulations, a reduced representation of the channel is used. The channel is solvated in a 1?M KCl solution, and an external electric field is applied. The pore specific diffusion coefficients for both ionic species are reduced 5–7 times in comparison to bulk values. Significant statistical variations (17–45%) of the pore-ions diffusivities are observed. Within the statistics, the ionic diffusivities remain invariable for a range of external applied voltages between 30 and 240?mV. In the 2D-PNP calculations, the pore stem is approximated by a smooth cylinder of radius ~9?Å with two constriction blocks where the radius is reduced to ~6?Å. The electrostatic potential includes the contribution from the atomistic charges. The MD-PNP model shows that the atomic charges are responsible for the rectifying behaviour and for the slight anion selectivity of the α-hemolysin pore. Independent of the hierarchy between the anion and cation diffusivities, the anionic contribution to the total ionic current will dominate. The predictions of the MD-PNP model are in good agreement with experimental data and give confidence in the present approach of bridging time scales by combining a microscopic and macroscopic model.  相似文献   
948.
Impairment in the clearance of misfolded proteins by functional proteins leads to various late-onset neurodegenerative diseases. Cell applies a strict quality control mechanism against malfunctioned proteins which may generate cellular proteoxicity. Under proteotoxic insults, cells immediately adopt two major approaches to either refold the misfolded proteinaceous species or degrade the unmanageable candidates. However, the main cellular proteostasis quality control mechanism is not clear. It is therefore important to understand the events and cellular pathways, which are implicated in the clearance of recalcitrant proteins. Ubiquitin proteasome system manages intracellular protein degradation. In this process, E3 ubiquitin ligase enzyme provides specificity for recognition of client proteins. In this review, we summarize various molecular approaches governed by E3 ubiquitin ligases in the degradation of aberrant proteins. A clear understanding of E3 ubiquitin ligases can offer a well tractable therapeutic approach against neurodegenerative diseases.  相似文献   
949.
Thymol and carvacrol are well known antioxidants found in the extract of the plants of thyme species. The Schiff bases of 2-iso-propyl-5-methyl-phenol (thymol/1a), 2-tert-butyl-5-methyl-phenol (1b) and 5-iso-propyl-2-methyl-phenol (carvacrol/1c) exhibited much better antioxidant activity than thymol and carvacrol in DPPH assay. Ten compounds (4k, 4l, 4r, 5k, 5l, 5q, 5r, 6k, 6l and 6r) showed better or similar activity as compared to the reference compound ascorbic acid. Twenty-four most active compounds were also screened by ABTS method and showed 60–90% inhibition at 5 μg/mL concentration.  相似文献   
950.
The advancement of a series of ligand efficient 2-amino-[1,2,4]triazolo[1,5-a]pyridines, initially identified from high-throughput screening, to a JAK2 inhibitor with pharmacodynamic activity in a mouse xenograft model is disclosed.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号