首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1386篇
  免费   81篇
  2024年   2篇
  2023年   11篇
  2022年   21篇
  2021年   48篇
  2020年   20篇
  2019年   32篇
  2018年   38篇
  2017年   28篇
  2016年   45篇
  2015年   88篇
  2014年   91篇
  2013年   120篇
  2012年   141篇
  2011年   123篇
  2010年   61篇
  2009年   56篇
  2008年   69篇
  2007年   65篇
  2006年   70篇
  2005年   67篇
  2004年   59篇
  2003年   53篇
  2002年   37篇
  2001年   11篇
  2000年   15篇
  1999年   10篇
  1998年   7篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   8篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1970年   2篇
  1969年   4篇
  1968年   1篇
排序方式: 共有1467条查询结果,搜索用时 31 毫秒
91.
Biomarker discovery approaches in urine have been hindered by concerns for reproducibility and inadequate standardization of proteomics protocols. In this study, we describe an optimized quantitative proteomics strategy for urine biomarker discovery, which is applicable to fresh or long frozen samples. We used urine from healthy controls to standardize iTRAQ (isobaric tags for relative and absolute quantitation) for variation induced by protease inhibitors, starting protein and iTRAQ label quantities, protein extraction methods, and depletion of albumin and immunoglobulin G (IgG). We observed the following: (a) Absence of protease inhibitors did not affect the number or identity of the high confidence proteins. (b) Use of less than 20 μg of protein per sample led to a significant drop in the number of identified proteins. (c) Use of as little as a quarter unit of an iTRAQ label did not affect the number or identity of the identified proteins. (d) Protein extraction by methanol precipitation led to the highest protein yields and the most reproducible spectra. (e) Depletion of albumin and IgG did not increase the number of identified proteins or deepen the proteome coverage. Applying this optimized protocol to four pairs of long frozen urine samples from diabetic Pima Indians with or without nephropathy, we observed patterns suggesting segregation of cases and controls by iTRAQ spectra. We also identified several previously reported candidate biomarkers that showed trends toward differential expression, albeit not reaching statistical significance in this small sample set.With ongoing advances in mass spectrometry (MS) and proteomics technology, proteomics analysis is progressively occupying a central position in biomarker discovery platforms. Biofluids such as urine and blood are the preferred media for proteomics analysis because of their ease of collection and extensive history of use in clinical laboratory practice. Urine, in particular, is an information-rich fluid that can be collected non-invasively and in large quantities. Many urine proteins are produced or shed in the kidney and urogenital tract (1), making urine a promising proximal source of biomarkers for diseases affecting these structures.However, proteomics-based biomarker discovery in urine faces multiple challenges. Urine proteomics is complicated by low urine protein concentration, variations in pH, and high concentrations of salts and urea or other urine components that interfere with sample processing. The urine proteome can also change with individual variables such as hydration, diurnal change, diet, and physical activity as well as variation in sample collection, processing, and storage. In addition, urine proteomics shares the usual challenges of biomarker discovery in other biofluids such as throughput, cost, and the need for a reproducible and quantitative work flow.Isotopic or isobaric labeling methods to reduce variation, increase throughput, and enable quantitative analysis have been developed to address some of these challenges. One such method, isobaric tags for relative and absolute quantitation (iTRAQ)1 (2), combines relative and absolute peptide quantification with multiplexing ability to enable an increased throughput as well as simultaneous comparison of up to eight samples within one experimental run. Variations induced by urine sample processing have been systematically evaluated for proteomics analyses using two-dimensional gel electrophoresis (36), differential gel electrophoresis (7), and liquid chromatography-coupled mass spectrometry (LC-MS) (5, 8, 9). However, no systematic analyses of urine sample collection and processing have been reported for iTRAQ.Before utilizing iTRAQ-based quantitative proteomics for urine biomarker discovery, we evaluated the impact of variation in several processing steps (addition of protease inhibitors, the starting protein quantities, quantity of the iTRAQ label, protein extraction methods, and depletion of abundant proteins) on iTRAQ protein identification and quantitation. Applying this optimized biomarker discovery protocol to small quantities of long frozen urine samples from the Pima longitudinal study of diabetic nephropathy, we observed patterns suggestive of segregation of cases and controls by iTRAQ spectra. We also observed trends toward differential expression in several proteins that had been identified as putative biomarkers in previous studies. However, given the small sample size, none of these proteins retained statistical significance after multiple testing correction.  相似文献   
92.
Alloimmunity to human endothelial cells derived from cord blood progenitors   总被引:1,自引:0,他引:1  
There is considerable interest in exploiting circulating endothelial progenitor cells (EPCs) for therapeutic organ repair. Such cells may be differentiated into endothelial cells (ECs) in vitro and then expanded for use in tissue engineering. Vessel-derived ECs are variably immunogenic, depending upon tissue source, and it is unknown whether ECs derived from cord blood EPCs are able to initiate an allogeneic response. In this study, we compare the phenotype and alloantigenicity of human cord blood progenitor cell-derived ECs with HUVECs isolated from the same donors. Human cord blood progenitor cell-derived ECs are very similar to HUVECs in the expression of proteins relevant for alloimmunity, including MHC molecules, costimulators, adhesion molecules, cytokines, chemokines, and IDO, and in their ability to initiate allogeneic CD4(+) and CD8(+) memory T cell responses in vitro and in vivo. These findings have significant implications for the use of cord blood EPCs in regenerative medicine or tissue engineering.  相似文献   
93.
94.
95.
Human DNA polymerase kappa (Pol kappa) is a proficient extender of mispaired primer termini on undamaged DNAs and is implicated in the extension step of lesion bypass. We present here the structure of Pol kappa catalytic core in ternary complex with DNA and an incoming nucleotide. The structure reveals encirclement of the DNA by a unique "N-clasp" at the N terminus of Pol kappa, which augments the conventional right-handed grip on the DNA by the palm, fingers, and thumb domains and the PAD and provides additional thermodynamic stability. The structure also reveals an active-site cleft that is constrained by the close apposition of the N-clasp and the fingers domain, and therefore can accommodate only a single Watson-Crick base pair. Together, DNA encirclement and other structural features help explain Pol kappa's ability to extend mismatches and to promote replication through various minor groove DNA lesions, by extending from the nucleotide incorporated opposite the lesion by another polymerase.  相似文献   
96.
We report in this study, an improved method for identifying male sterile–restorer combinations using the barnasebarstar system of pollination control for heterosis breeding in crop plants, as an alternative to the conventional line × tester cross method. In this strategy, a transgenic male sterile barnase line was retransformed with appropriate barstar constructs. Double transformants carrying both the barnase and barstar genes were identified and screened for their male fertility status. Using this strategy, 66–90% of fertile retransformants (restored events) were obtained in Brassica juncea using two different barstar constructs. Restored events were analysed for their pollen viability and copy number of the barstar gene. Around 90% of the restored events showed high pollen viability and ∼30% contained single copy integrations of the barstar gene. These observations were significantly different from those made in our earlier studies using line (barnase) × tester (barstar) crosses, wherein only two viable male sterile–restorer combinations were identified by screening 88 different cross-combinations. The retransformation strategy not only generated several independent restorers for a given male sterile line from a single transformation experiment but also identified potential restorers in the T0 generation itself leading to significant savings in time, cost and labour. Single copy restored plants with high pollen viability were selfed to segregate male sterile (barnase) and restorer (barstar) lines in the T1 progeny which could subsequently be diversified into appropriate combiners for heterosis breeding. This strategy will be particularly useful for crop plants where poor transformation frequencies and/or lengthy transformation protocols are a major limitation.  相似文献   
97.
The cauliflower mosaic virus 35S (35S) promoter is used extensively for transgene expression in plants. The promoter has been delineated into different subdomains based on deletion analysis and gain-of-function studies. However, cis -elements important for promoter activity have been identified only in the domains B1 ( as-2 element), A1 ( as-1 element) and minimal promoter (TATA box). No cis -elements have been described in subdomains B2–B5, although these are reported to be important for the overall activity of the 35S promoter. We have re-evaluated the contribution of three of these subdomains, namely B5, B4 and B2, to 35S promoter activity by developing several modified promoters. The analysis of β-glucuronidase gene expression driven by the modified promoters in different tissues of primary transgenic tobacco lines, as well as in seedlings of the T1 generation, revealed new facets about the functional organization of the 35S promoter. This study suggests that: (i) the 35S promoter truncated up to –301 functions in a similar manner to the –343 (full-length) 35S promoter; (ii) the Dof core and I-box core observed in the subdomain B4 are important for 35S promoter activity; and (iii) the subdomain B2 is essential for maintaining an appropriate distance between the proximal and distal regions of the 35S promoter. These observations will aid in the development of functional synthetic 35S promoters with decreased sequence homology. Such promoters can be used to drive multiple transgenes without evoking promoter homology-based gene silencing when attempting gene stacking.  相似文献   
98.
Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes   总被引:3,自引:0,他引:3  
Invention of polymerase chain reaction (PCR) technology by Kary Mullis in 1984 gave birth to real-time PCR. Real-time PCR - detection and expression analysis of gene(s) in real-time - has revolutionized the 21(st) century biological science due to its tremendous application in quantitative genotyping, genetic variation of inter and intra organisms, early diagnosis of disease, forensic, to name a few. We comprehensively review various aspects of real-time PCR, including technological refinement and application in all scientific fields ranging from medical to environmental issues, and to plant.  相似文献   
99.

DNA replication, repair, and recombination (DRRR) are the fundamental processes required for faithful transmission of genetic information within and between generations. The DRRR genes protect the cells from potential mutations and damage during the developmental phases and stress conditions. Thus, these genes indirectly regulate diverse important agronomic traits in a crop plant. A genome-wide survey of six DRRR pathway genes, namely, DNA replication, Base Excision Repair, Nucleotide Excision Repair, Homologous Recombination, Mismatch Excision Repair, and Non-Homologous End-Joining, identified 157 DRRR genes in chickpea. Phylogenetic analysis of these genes within the legume clades and model plant Arabidopsis identified 42 conserved DRRR genes exhibiting clade-specific evolutionary patterns. Integrating the gene-based association mapping with differential expression profiling identified the natural alleles of the potential DRRR genes, primarily regulating flowering and maturation time and involved in drought tolerance of chickpea. Identifying and understanding DRRR genes’ roles in regulating yield and stress tolerance traits in a vital grain legume like chickpea is requisite for its future crop improvement endeavors. Manipulation of promising functionally relevant DRRR genes will pave the way for simultaneous improvement in multiple beneficial agronomic traits in chickpea.

  相似文献   
100.
Journal of Plant Biochemistry and Biotechnology - Plant genomes contain a sizeable fraction, ranging from 14 to 75% of retrotransposons (class I elements), predominantly comprising LTR (Long...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号