首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   707篇
  免费   57篇
  2023年   6篇
  2022年   17篇
  2021年   16篇
  2020年   18篇
  2019年   11篇
  2018年   17篇
  2017年   14篇
  2016年   18篇
  2015年   43篇
  2014年   31篇
  2013年   49篇
  2012年   64篇
  2011年   67篇
  2010年   47篇
  2009年   34篇
  2008年   42篇
  2007年   54篇
  2006年   50篇
  2005年   46篇
  2004年   27篇
  2003年   23篇
  2002年   24篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1972年   1篇
  1970年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有764条查询结果,搜索用时 15 毫秒
61.
EphA2 receptor tyrosine kinase and the human cytoplasmic protein tyrosine phosphatase (HCPTP) are overexpressed in a number of epithelial cancers. Overexpressed EphA2 in these cancers shows a significant decrease in phosphotyrosine content which results in suppression of receptor signaling and endocytosis and an increase in metastatic potential. The decreased phosphotyrosine content of EphA2 has been associated with decreased contact with its ligand, ephrin A1 and dephosphorylation by HCPTP. Potential specificity of the two HCPTP variants for tyrosines on EphA2 has not been investigated. We have used a mass spectrometry assay to measure relative rates of dephosphorylation for the two HCPTP variants at phosphotyrosine sites associated with control of the EphA2 kinase activity or interaction with downstream targets. Our results suggest that although both variants dephosphorylate the EphA2 receptor, the rate and specificity of dephosphorylation for specific tyrosines are different for HCPTP-A and HCPTP-B. The SAM domain tyrosine Y960 which has been implicated in downstream PI3K signaling is dephosphorylated exclusively by HCPTP-B. The activation loop tyrosine (Y772) which directly controls kinase activity is dephosphorylated about six times faster by HCPTP-A. In contrast, the juxtamembrane tyrosines (Y575, Y588 and Y594) which are implicated in both control of kinase activity and downstream signaling are dephosphorylated by both variants with similar rates. This difference in preference for dephosphorylation sites on EphA2 not only illuminates the different roles of the two variants of the phosphatase in EphA2 signaling, but also explains why both HCPTP variants are highly conserved in most mammals.  相似文献   
62.
There is growing evidence of changes in the timing of important ecological events, such as flowering in plants and reproduction in animals, in response to climate change, with implications for population decline and biodiversity loss. Recent work has shown that the timing of breeding in wild birds is changing in response to climate change partly because individuals are remarkably flexible in their timing of breeding. Despite this work, our understanding of these processes in wild populations remains very limited and biased towards species from temperate regions. Here, we report the response to changing climate in a tropical wild bird population using a long-term dataset on a formerly critically endangered island endemic, the Mauritius kestrel. We show that the frequency of spring rainfall affects the timing of breeding, with birds breeding later in wetter springs. Delays in breeding have consequences in terms of reduced reproductive success as birds get exposed to risks associated with adverse climatic conditions later on in the breeding season, which reduce nesting success. These results, combined with the fact that frequency of spring rainfall has increased by about 60 per cent in our study area since 1962, imply that climate change is exposing birds to the stochastic risks of late reproduction by causing them to start breeding relatively late in the season.  相似文献   
63.
In the intrinsic death pathway, cytochrome C (CC) released from mitochondria to the cytosol triggers Apaf-1 apoptosome formation and subsequent caspase activation. This process can be recapitulated using recombinant Apaf-1 and CC in the presence of nucleotides ATP or dATP [(d)ATP] or using fresh cytosol and CC without the need of exogenous nucleotides. Surprisingly, we found that stored cytosols failed to support CC-initiated caspase activation. Storage of cytosols at different temperatures led to the loss of all (deoxy)nucleotides including (d)ATP. Addition of (d)ATP to such stored cytosols partially restored CC-initiated caspase activation. Nevertheless, CC could not induce complete caspase-9/3 activation in stored cytosols, even with the addition of (d)ATP, despite robust Apaf-1 oligomerization. The Apaf-1 apoptosome, which functions as a proteolytic-based molecular timer appeared to be defective as auto-processing of recruited procaspase-9 was inhibited. Far Western analysis revealed that procaspase-9 directly interacted with Apaf-1 and this interaction was reduced in the presence of physiological levels of ATP. Co-incubation of recombinant Apaf-1 and procaspase-9 prior to CC and ATP addition inhibited CC-induced caspase activity. These findings suggest that in the absence of nucleotide such as ATP, direct association of procaspase-9 with Apaf-1 leads to defective molecular timer, and thus, inhibits apoptosome-mediated caspase activation. Altogether, our results provide novel insight on nucleotide regulation of apoptosome.  相似文献   
64.
Mitochondrial structural and functional alterations appear to play to an important role in the pathogenesis of Alzheimer's disease (AD). In the present study, we used a quantitative comparative proteomic profiling approach to analyze changes in the mitochondrial proteome in AD. A triple transgenic mouse model of AD (3xTg-AD) which harbors mutations in three human transgenes, APP(Swe), PS1(M146V) and Tau(P301L), was used in these experiments. Quantitative differences in the mitochondrial proteome between the cerebral cortices of 6-month-old male 3xTg-AD and non-transgenic mice were determined by using two-dimensional difference gel electrophoresis (2D-DIGE) and tandem mass spectrometry. We identified 23 different proteins whose expression levels differed significantly between triple transgenic and non-transgenic mitochondria. Both down-regulated and up-regulated mitochondrial proteins were observed in transgenic AD cortices. Proteins which were dysregulated in 3xTg-AD cortices functioned in a wide variety of metabolic pathways, including the citric acid cycle, oxidative phosphorylation, pyruvate metabolism, glycolysis, oxidative stress, fatty acid oxidation, ketone body metabolism, ion transport, apoptosis, and mitochondrial protein synthesis. These alterations in the mitochondrial proteome of the cerebral cortices of triple transgenic AD mice occurred before the development of significant amyloid plaque and neurofibrillary tangles, indicating that mitochondrial dysregulation is an early event in AD.  相似文献   
65.
Mitochondria play an important role on the entire cellular copper homeostatic mechanisms. Alteration of cellular copper levels may thus influence mitochondrial proteome and its investigation represents an important contribution to the general understanding of copper-related cellular effects. In these study we have performed an organelle targeted proteomic investigation focusing our attention on the effect of non-lethal 1mM copper concentration on Saccharomyces cerevisiae mitochondrial proteome. Functional copper effects on yeast mitochondrial proteome were evaluated by using both 2D electrophoresis (2-DE) and liquid chromatography coupled with tandem mass spectrometry. Proteomic data have been then analyzed by different unsupervised meta-analysis approaches that highlight the impairment of mitochondrial functions and the activation of oxidative stress response. Interestingly, our data have shown that stress response generated by 1mM copper treatment determines the activation of S. cerevisiae survival pathway. To investigate these findings we have treated yeast cells responsiveness to copper with hydrogen peroxide and observed a protective role of this metal. These results are suggestive of a copper role in the protection from oxidative stress possibly due to the activation of mechanisms involved in cellular survival and growth.  相似文献   
66.
67.
68.
Host cell range, or tropism, combined with coreceptor usage defines viral phenotypes as macrophage tropic using CCR5 (M-R5), T-cell-line tropic using CXCR4 (T-X4), or dually lymphocyte and macrophage tropic using CXCR4 alone or in combination with CCR5 (D-X4 or D-R5X4). Although envelope gp120 V3 is necessary and sufficient for M-R5 and T-X4 phenotypes, the clarity of V3 as a dominant phenotypic determinant diminishes in the case of dualtropic viruses. We evaluated D-X4 phenotype, pathogenesis, and emergence of D-X4 viruses in vivo and mapped genetic determinants in gp120 that mediate use of CXCR4 on macrophages ex vivo. Viral quasispecies with D-X4 phenotypes were associated significantly with advanced CD4+-T-cell attrition and commingled with M-R5 or T-X4 viruses in postmortem thymic tissue and peripheral blood. A D-X4 phenotype required complex discontinuous genetic determinants in gp120, including charged and uncharged amino acids in V3, the V5 hypervariable domain, and novel V1/V2 regions distinct from prototypic M-R5 or T-X4 viruses. The D-X4 phenotype was associated with efficient use of CXCR4 and CD4 for fusion and entry but unrelated to levels of virion-associated gp120, indicating that gp120 conformation contributes to cell-specific tropism. The D-X4 phenotype describes a complex and heterogeneous class of envelopes that accumulate multiple amino acid changes along an evolutionary continuum. Unique gp120 determinants required for the use of CXCR4 on macrophages, in contrast to cells of lymphocytic lineage, can provide targets for development of novel strategies to block emergence of X4 quasispecies of human immunodeficiency virus type 1.  相似文献   
69.
Clostridium perfringens type A food poisoning is caused by C. perfringens isolates carrying a chromosomal enterotoxin gene (cpe), while non-food-borne gastrointestinal (GI) diseases, such as antibiotic-associated diarrhea (AAD) and sporadic diarrhea (SD), are caused by C. perfringens plasmid cpe isolates. A recent study reported the association of beta2 toxin (CPB2) with human GI diseases, and particularly AAD/SD, by demonstrating that a large percentage of AAD/SD isolates, in contrast to a small percentage of food poisoning isolates, carry the beta2-toxin gene (cpb2). This putative relationship was further tested in the current study by characterizing 14 cpe+ C. perfringens fecal isolates associated with recent cases of human SD in England (referred to hereafter as SD isolates). These SD isolates were all classified as cpe+ type A, and 12 of the 14 cpe+ isolates carry their cpe gene on the plasmid and 2 carry it on the chromosome. Interestingly, cpb2 is present in only 12 plasmid cpe isolates; 11 isolates carry cpe and cpb2 on different plasmids, but cpe and cpb2 are located on the same plasmid in one isolate. C. perfringens enterotoxin is produced by all 14 cpe+ SD isolates. However, only 10 of the 12 cpe+/cpb2+ SD isolates produced CPB2, with significant variation in amounts. The levels of cpb2 mRNA in low- to high-CPB2-producing SD isolates differed to such an extent (30-fold) that this difference could be considered a major cause of the differential level of CPB2 production in vitro by SD isolates. Furthermore, no silent or atypical cpb2 was found in a CPB2 Western blot-negative isolate, 5422/94, suggesting that the lack of CPB2 production in 5422/94 was due to low expression of cpb2 mRNA. This received support from our observation that the recombinant plasmid carrying 5422/94 cpb2, which overexpressed cpb2 mRNA, restored CPB2 production in F4969 (a cpb2-negative isolate). Collectively, our present results suggest that CPB2 merits further study as an accessory toxin in C. perfringens-associated SD.  相似文献   
70.
Aligned alpha helix peptide dipoles sum to a "macroscopic" dipole parallel to the helix axis that has been implicated in protein folding and function. However, in aqueous solution the dipole is counteracted by an electrostatic reaction field generated by the solvent, and the strength of the helix dipole may reduce drastically from its value in vacuum. Here, using atomic-detail helix models and Poisson-Boltzmann continuum electrostatics calculations, the net effective dipole moment, mu(eff), is calculated. Some initially surprising results are found. Whereas in vacuum mu(eff) increases with helix length, the opposite is found to be the case for transmembrane helices. In soluble proteins, mu(eff) is found to vary strongly with the orientation and position of the helix relative to the aqueous medium. A set of rules is established to estimate of the strength of mu(eff) from graphical inspection of protein structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号