全文获取类型
收费全文 | 708篇 |
免费 | 57篇 |
专业分类
765篇 |
出版年
2024年 | 1篇 |
2023年 | 6篇 |
2022年 | 17篇 |
2021年 | 16篇 |
2020年 | 18篇 |
2019年 | 11篇 |
2018年 | 17篇 |
2017年 | 14篇 |
2016年 | 18篇 |
2015年 | 43篇 |
2014年 | 31篇 |
2013年 | 49篇 |
2012年 | 64篇 |
2011年 | 67篇 |
2010年 | 47篇 |
2009年 | 34篇 |
2008年 | 42篇 |
2007年 | 54篇 |
2006年 | 50篇 |
2005年 | 46篇 |
2004年 | 27篇 |
2003年 | 23篇 |
2002年 | 24篇 |
2001年 | 5篇 |
2000年 | 3篇 |
1999年 | 4篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1986年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1972年 | 1篇 |
1970年 | 1篇 |
1967年 | 2篇 |
1966年 | 1篇 |
排序方式: 共有765条查询结果,搜索用时 0 毫秒
51.
It is of interest to compile available information on the root canal morphology of primary maxillary molars from known literature. The literature resources used to collect data include Medline/PubMed, The Cochrane Central Register of Clinical Trials, SIGLE and Science Direct. Data consists of type of population, number of teeth per study, number of root canals, canal length and type of root canal configuration. We used data from a total of 13 studies (951 primary maxillary molars). Maxillary molars (1st and 2nd) are dominant for two roots variant. The first molar the mean root length ranges from 7.9mm - 8.1mm. The second molar ranges from 7.2mm-8.5mm. Type I (explain in a phrase) canal morphology is the common variant in both the molars. Data shows that Root Canal morphology shows variations with the diagnostic aid (example micro CT) used and in different ethnic populations. 相似文献
52.
53.
54.
Ridim D. Mote Jyoti Yadav Surya Bansi Singh Mahak Tiwari Shinde Laxmikant V Shivprasad Patil Deepa Subramanyam 《The Journal of biological chemistry》2020,295(49):16888
Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young''s modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young''s modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate. 相似文献
55.
56.
Balasubramaniam D Paul LN Homan KT Hall MC Stauffacher CV 《Protein science : a publication of the Protein Society》2011,20(7):1172-1181
EphA2 receptor tyrosine kinase and the human cytoplasmic protein tyrosine phosphatase (HCPTP) are overexpressed in a number of epithelial cancers. Overexpressed EphA2 in these cancers shows a significant decrease in phosphotyrosine content which results in suppression of receptor signaling and endocytosis and an increase in metastatic potential. The decreased phosphotyrosine content of EphA2 has been associated with decreased contact with its ligand, ephrin A1 and dephosphorylation by HCPTP. Potential specificity of the two HCPTP variants for tyrosines on EphA2 has not been investigated. We have used a mass spectrometry assay to measure relative rates of dephosphorylation for the two HCPTP variants at phosphotyrosine sites associated with control of the EphA2 kinase activity or interaction with downstream targets. Our results suggest that although both variants dephosphorylate the EphA2 receptor, the rate and specificity of dephosphorylation for specific tyrosines are different for HCPTP-A and HCPTP-B. The SAM domain tyrosine Y960 which has been implicated in downstream PI3K signaling is dephosphorylated exclusively by HCPTP-B. The activation loop tyrosine (Y772) which directly controls kinase activity is dephosphorylated about six times faster by HCPTP-A. In contrast, the juxtamembrane tyrosines (Y575, Y588 and Y594) which are implicated in both control of kinase activity and downstream signaling are dephosphorylated by both variants with similar rates. This difference in preference for dephosphorylation sites on EphA2 not only illuminates the different roles of the two variants of the phosphatase in EphA2 signaling, but also explains why both HCPTP variants are highly conserved in most mammals. 相似文献
57.
Dominant fungi in the rhizosphere of established tea bushes and their interaction with the dominant bacteria under in situ conditions. 总被引:2,自引:0,他引:2
Species of Penicillium and Trichoderma were found to dominate the rhizosphere of established tea bushes in a detailed study conducted from various tea growing locations in India. Penicillium erythromellis, P. janthinellum, P. raistrickii, Trichoderma pseudokoningii and T. koningii were found to be closely associated with tea roots. While seasonal fluctuation was observed in the case of Penicillium spp., the population of Trichoderma spp. showed less variation during the year. Both species were sensitive to low temperatures. In general, fungi associated with the tea rhizosphere were found to prefer a mesophillic temperature range (15 °C to 35 °C). The dominant species of Penicillium and Trichoderma also exhibited tolerance to lower temperatures, i.e., 5 to 10 °C on agar plates. Most fungi were able to grow in a wide range of pH (4 to 12). Lowering of soil pH in the rhizosphere of tea bushes was positively correlated with the age of the bush and may have affected the development of a specific microbial community in the rhizosphere.
The populations of Penicillium and Trichoderma species were inversely correlated with the populations of two most dominant rhizosphere bacteria, Bacillus subtilis and B. mycoides. Both Bacillus species have been shown to have antagonistic activity against these two fungi under in vitro conditions. The present study demonstrates the existence of a similar antagonism under in situ conditions in the rhizosphere of established tea bushes. 相似文献
58.
Regulation of c-Jun N-terminal kinase by MEKK-2 and mitogen-activated protein kinase kinase kinases in rheumatoid arthritis 总被引:5,自引:0,他引:5
Hammaker DR Boyle DL Chabaud-Riou M Firestein GS 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(3):1612-1618
The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) is a critical regulator of collagenase-1 production in rheumatoid arthritis (RA). The MAPKs are regulated by upstream kinases, including MAPK kinases (MAPKKs) and MAPK kinase kinases (MAP3Ks). The present study was designed to evaluate the expression and regulation of the JNK pathway by MAP3K in arthritis. RT-PCR studies of MAP3K gene expression in RA and osteoarthritis synovial tissue demonstrated mitogen-activated protein kinase/ERK kinase kinase (MEKK) 1, MEKK2, apoptosis-signal regulating kinase-1, TGF-beta activated kinase 1 (TAK1) gene expression while only trace amounts of MEKK3, MEKK4, and MLK3 mRNA were detected. Western blot analysis demonstrated immunoreactive MEKK2, TAK1, and trace amounts of MEKK3 but not MEKK1 or apoptosis-signal regulating kinase-1. Analysis of MAP3K mRNA in cultured fibroblast-like synoviocytes (FLS) showed that all of the MAP3Ks examined were expressed. Western blot analysis of FLS demonstrated that MEKK1, MEKK2, and TAK1 were readily detectable and were subsequently the focus of functional studies. In vitro kinase assays using MEKK2 immunoprecipitates demonstrated that IL-1 increased MEKK2-mediated phosphorylation of the key MAPKKs that activate JNK (MAPK kinase (MKK)4 and MKK7). Furthermore, MEKK2 immunoprecipitates activated c-Jun in an IL-1 dependent manner and this activity was inhibited by the selective JNK inhibitor SP600125. Of interest, MEKK1 immunoprecipitates from IL-1-stimulated FLS appeared to activate c-Jun through the JNK pathway and TAK1 activation of c-Jun was dependent on JNK, ERK, and p38. These data indicate that MEKK2 is a potent activator of the JNK pathway in FLS and that signal complexes including MEKK2, MKK4, MKK7, and/or JNK are potential therapeutic targets in RA. 相似文献
59.
Japanese encephalitis virus (JEV) is a neurotropic flavivirus, which causes viral encephalitis leading to death in about 20–30% of severely-infected people. Although JEV is known to be a neurotropic virus its replication in non-neuronal cells in peripheral tissues is likely to play a key role in viral dissemination and pathogenesis. We have investigated the effect of JEV infection on cellular junctions in a number of non-neuronal cells. We show that JEV affects the permeability barrier functions in polarized epithelial cells at later stages of infection. The levels of some of the tight and adherens junction proteins were reduced in epithelial and endothelial cells and also in hepatocytes. Despite the induction of antiviral response, barrier disruption was not mediated by secreted factors from the infected cells. Localization of tight junction protein claudin-1 was severely perturbed in JEV-infected cells and claudin-1 partially colocalized with JEV in intracellular compartments and targeted for lysosomal degradation. Expression of JEV-capsid alone significantly affected the permeability barrier functions in these cells. Our results suggest that JEV infection modulates cellular junctions in non-neuronal cells and compromises the permeability barrier of epithelial and endothelial cells which may play a role in viral dissemination in peripheral tissues. 相似文献
60.